期刊文献+

在线生物文献磁共振图像识别方法

Magnetic Resonance Image Recognition Method of Online Biological Literature
在线阅读 下载PDF
导出
摘要 为实现在线生物文献磁共振成像(MRI)图像库的构建,利用图像特征的塔式梯度方向直方图(PHOG)和塔式关键词直方图(PHOW)进行互补特征表示,使用支持向量机对MRI图像与非MRI图像以及脑部MRI与非脑部MRI图像进行自动分类。实验结果表明,空间形状信息与局部分布信息融合的特征能提高图像分类的准确率,为构建在线文献中MRI图像库的知识系统提供技术支持。 In order to construct the Magnetic Resonance Imaging(MRI) database from online literature, MRI image recognition and brain MRI recognition are studied. In this paper, two complementary features, Pyramid Histogram of Orientated Gradients(PHOG) and Pyramid Histogram of Words(PHOW) are adopted to extract and describe the features of images. An improved Support Vector Machine(SVM) classifier based on feature fusion which combines spatial shape and local distribution information is proposed. Experimental result shows a significant improvement in the average accuracy of the fusion classifier as compared with classifiers only based on PHOG or PHOW. It provides a foundation of building a knowledge base system that can interpret MRI images in online articles.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第15期1-5,共5页 Computer Engineering
基金 浙江省自然科学基金资助项目(Y1101359)
关键词 在线文献 磁共振成像 塔式梯度方向直方图 塔式关键词直方图 图像分类 online literature Magnetic Resonance Imaging(MRI) Pyramid Histogram of Orientated Gradients(PHOG) Pyramid Histogram of Words(PHOW) image
  • 相关文献

参考文献17

  • 1Shatkay H, Chen Nawei, Blostein D. Integrating Image Data into Biomedical Text Categorization[J]. Bioinformatics, 2006, 22(14): 446-453.
  • 2Xu Songhua, Mccusher J, Krauthammer M. Yale Image Finder (YIF): A New Search Engine for Retrieving Biomedical Images[J]. Bioinformatics, 2008, 24(17): 1969-1970.
  • 3Koike A, Takagi T. Classifying Biomedical Figures Using Combi- nation of Bag of Keypoints and Bag of Words[C] //Proc. of International Conference on Complex, Intelligent and Software Intensive Systems. Fukuoka, Japan: IEEE Press, 2009: 848-853.
  • 4Divoli A, Wooldridge M A, Hearst M A. Full Text and Figure Display Improves Bioscience Literature Search[J]. Public Library of Science, 2010, 5(4): 1-15.
  • 5Bosch A, Zisserman A, Munoz X. Representing Shape with a Spatial Pyramid Kernel[C] //Proc. of the 6th ACM International Conference on Image and Video Retrieval. Amsterdam, Holland: [s. n.] , 2007: 401-408.
  • 6Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories[C] // Proc. of Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Computer Society, 2006: 2169-2178.
  • 7Li Feifei, Perona P. A Bayesian Hierarchical Model for Learning Natural Scene Categories[C] //Proc. of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Computer Society, 2005: 524-531.
  • 8任雪,孙涵,张金国.一种新的基于局部特征的图像质量评价方法[J].中国图象图形学报,2010,15(8):1236-1243. 被引量:10
  • 9李伟生,赵灵芝.基于兴趣点多特征融合的物体识别方法[J].计算机工程,2010,36(18):7-9. 被引量:1
  • 10赵鹏飞, 钱沄涛, 郑文斌. 在线文献的嵌图序号检测与识 别[C] //第8届全国信号与信息处理联合学术会议论文集. 北京: 中国体视学学会, 2009: 151-155.

二级参考文献58

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部