期刊文献+

区间参数压电智能桁架一体化多目标拓扑优化 被引量:2

Applying Multi-Objective Integrated Optimization Better to Structural Topology and Control of Piezoelectric Smart Truss Using Interval Parameters
在线阅读 下载PDF
导出
摘要 针对区间参数压电智能桁架结构/控制一体化多目标拓扑优化设计问题进行研究。考虑的区间参数有普通杆件、压电作动杆及其连接杆的弹性模量、密度、杆件的截面面积、普通杆件的许用应力、压电作动杆所施加控制电压的限值,基于泰勒展开和区间扩张导出区间参数压电受控结构的开闭环特性,以结构和控制器的信息为设计变量,结构的质量和控制能量的上限为目标,满足结构杆件应力和控制系统电压的区间可能度约束条件,建立考虑拓扑的区间参数压电智能桁架结构/控制一体化多目标优化模型。优化求解策略采用基于Pareto排序的求解有约束的多目标遗传算法。数值算例验证了模型和方法可行性和有效性。 Aim. The introduction of the full paper reviews some papers in the open literature and then proposes the research mentioned in the title. Sections 1 through 4 explain our application. The core of sections 1,2 and 3 consists of: (1)through Taylor expansion and interval extension of function, the interval values of the objective func- tions and the constraint functions can be obtained; (2) based on interval possibility degree, the integrated optimization mathematical model with stress and voltage constraints of piezoelectric smart truss is constructed; the upper bound of the structure weight and that of the quadratic objective function are taken as objective functions; the cross sectional areas of bars, nodal topological information, actuator placement, the number of actuators and control gain are regarded as design variables; (3) the Pareto CMOPGA (genetic algorithm for constrained multi-objective optimization problem) on the basis of individual ranking problem. Section 4 gives a numerical example, whose On the basis of the results of the numerical example, is adopted to solve the constraint multi-objective optimization results are presented in Figs. 5,6 and 7 and Tables 1 and 2. section 5 gives four preliminary conclusions.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第4期581-586,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11072197) 西北工业大学基础研究基金(JC201033) 教育部博士点基金(20096102120024)资助
关键词 压电智能桁架 区间可能度 多目标 一体化拓扑优化 遗传算法 piezoelectric materials, trusses, topology, optimization, Pareto principle, interval possibility multi-objective optimization, genetic algorithm degree
  • 相关文献

参考文献6

  • 1赵国忠,顾元宪.压电智能桁架的振动控制和结构的一体化优化设计[J].航空学报,2003,24(4):332-335. 被引量:9
  • 2Kazuhiko Hiramoto, Hitoshi Doki. Simultaneous Optimal Design of Structural and Control Systems for Cantilevered Pipes Conveying Fluid. Journal of Sound and Vibration, 2004, 274:685 - 699.
  • 3Xu B, Jiang J S. Integrated Optimization of Structure and Control for Piezoelectric Intelligent Trusses with Uncertain Placement of Actuators and Sensors. Computational Mechanics, 2004, 33 (5) :406 - 411.
  • 4Xu B, Jiang J S, Ou J P. Integrated Optimization of Structural Topology and Control for Piezoelectric Smart Trusses Using Genetic Algorithm. Journal of Sound and Vibration, 2007,307:393 -427.
  • 5Jiang C, Han X, Liu G R. A Nonlinear Interval Number Programming Method for Uncertain Optimization Problems. European Journal of Operational Research, 2008,188 ( 1 ) : 1 - 13.
  • 6黄冀卓,王湛.基于遗传算法的抗震钢框架多目标优化设计[J].力学学报,2007,39(3):389-397. 被引量:21

二级参考文献24

  • 1Zhao Guozhong, Gu Yuanxian, Li Yunpeng.OPTIMUM DESIGN AND SENSITIVITY ANALYSIS OF PIEZOELECTRIC TRUSS STRUCTURES[J].Acta Mechanica Solida Sinica,2001,14(3):225-234. 被引量:1
  • 2邹秀芬,刘敏忠,吴志健,康立山.解约束多目标优化问题的一种鲁棒的进化算法[J].计算机研究与发展,2004,41(6):985-990. 被引量:14
  • 3Tzou H S, Gadre M. Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distrihuted vibration controls[J]. Journal of Sound and Vibration, 1989, 132(3): 433- 450.
  • 4Rao S S, Venkayya V B, Khot N S. Optimization of actively controlled structures using goal programming techniques[ J ].Int J for Numer Methods Eng, 1988, 26:183 - 197.
  • 5Grsndhi R V. Structural and control optimization of space structures[J]. Computers & Structures, 1989, 31(2): 139- 150.
  • 6Wang Z D, Chen S H, Hart W Z. Integrated structural and control optimization of intelligent structures [ J ]. Engineering Structures, 1999, 21:183 - 191.
  • 7.建筑抗震设计规范(GB50011-2001)[M].中国建筑工业出版社,2001..
  • 8聂润兔,邵成勋,邹振祝.智能桁架机电耦合动力分析与振动控制[J].振动工程学报,1997,10(2):119-124. 被引量:24
  • 9玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 10.钢结构设计规范(GB50017-2003)[M].北京:中国计划出版社,2003..

共引文献26

同被引文献16

  • 1滕军,刘季.两结构联系振动控制体系及控制元件参数优化[J].振动工程学报,1994,7(3):246-250. 被引量:7
  • 2苏静波,邵国建.基于区间分析的工程结构不确定性研究现状与展望[J].力学进展,2005,35(3):338-344. 被引量:42
  • 3Kazuhiko Hiramoto,Hitoshi Doki. Simultaneous opti-mal design of structural and control systems for canti-levered pipes conveying fluid[J]. Journal of Sound andVibration, 2004 ,274 : 685一699.
  • 4Xu B, Jiang J S. Integrated optimization of structureand control for piezoelectric intelligent trusses with un-certain placement of actuators and sensors [J]. Com-putational Mechanics,2004,33(5) :406-411.
  • 5Xu B, Jiang J s,Ou J P. Integrated optimization ofstructural topology and control for piezoelectric smarttrusses using genetic algorithm [J]. Journal of Soundand Vibration, 2007,307:393-427.
  • 6William L 0,Oberkampf Jon C,Helton Cliff A, etal. Challenge problems: uncertainty in system re-sponse given uncertain parameters[J]. Reliability En-gineering and System Safety, 2004,85(1-3) :11-19.
  • 7Ben-Haim Y. Uncertainty, probability and informa-tion-gaps[J]. Reliability Engineering and System Safe-ty, 2004,85:249-266.
  • 8Soong T T, C imellaro G P. Future directions in structural control[J]. Structural Control and Health Monitoring, 2009, 16:7 -16.
  • 9Xu Bin ,Zhang Yili, Yao Shuxian, et al. Integrated design of control/structural systems based on genetic algorithm[ J]. Applied Mechanics and Mate- rials,2012 ( 204 - 208 ) :4855 - 4867.
  • 10Cimellaro G P, Soong T T, Reinhorn A M. Integrated design of inelastic controlled structural systems [ J ]. Structural Control Health Monitoring, 2009, 16(7 -8):689-702.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部