期刊文献+

新型人工中耳压电振子设计 被引量:8

Design of a new type of piezoelectric actuator for middle ear implant
在线阅读 下载PDF
导出
摘要 提出利用压电叠堆作砧骨激励式人工中耳的振子,并利用中耳-压电叠堆耦合力学模型对该压电叠堆振子进行辅助设计。该模型基于一无任何听力损伤病史的成年志愿者的左耳,利用CT扫描和逆向成型技术建成。其可靠性通过与实验对比加以验证。最终设计的压电振子只需要10.5 V的有效驱动电压,便可以对镫骨激起相当于鼓膜处90dB声压激励的振幅。该振子在频率为1 kHz的单伏电压驱动工况下,能耗仅为0.03 mW,满足人工中耳低电压、低能耗的要求。 A piezoelectric stack actuator for incus driving type middle ear implant was proposed and designed.To aid the design,a coupled mechanical model between a human middle ear and a piezoelectric stack actuator was constructed.This model was built based on a complete set of computerized tomography section images of a healthy volunteer's left ear with reverse engineering technology.The result showed that the stapes footplate displacement stimulated with the designed piezoelectric stack actuator's excitation at 10.5 V rms is equivalent to that from acoustic stimulation at 90 dB SPL,adequate to the ossicular chain;the corresponding power consumption is 0.03 mW per volt of excitation at 1 kHz,low enough to meet the requirements of a middle ear implant.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第7期112-115,126,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(10772121) 上海交通大学医工交叉研究基金(YG2007MS14)
关键词 人工中耳 压电叠堆 有限元分析 middle ear implant piezoelectric stack finite element analysis
  • 相关文献

参考文献21

  • 1Meister H, Lausberg I, Kiessling J, et al. Determining the importance of fundamental hearing aid attributes [ J ]. Otol Neurotol, 2002, 23 (4) : 457 - 462.
  • 2Davis A. Population study of the ability to benefit from amplification and the provision of a heating aid in 55 -74 - year-old first-time hearing aid users [ J ]. Int J Audiol, 2003, 42 ( Suopl 2) : 2S39 - 2S52.
  • 3Haynes D S, Young J A, Wanna G B, et al. Middle ear implantable hearing devices: an overview [ J ]. Trends Amplif, 2009, 13(3): 206-214.
  • 4郭继周,汪若峰,刘莎,赵丽萍,李玉珍.植入式人工中耳听器-GWⅠ型的研制及动物实验研究[J].耳鼻咽喉(头颈外科),1994,1(4):237-240. 被引量:6
  • 5王应丰,沈高飞,塔娜,饶柱石.声桥系统压电植入振子力学建模及参数优化[J].振动与冲击,2009,28(3):108-111. 被引量:4
  • 6Hudde H, Weistenhofer C. A three-dimensional circuit model of the middle ear [ J ]. Acustica United with Acta Acustica, 1997, 83(2) : 535 -549.
  • 7Feng B, Gan R Z. Lumped parametric model of the human ear for sound transmission [ J ]. Biomeehan Model Meehanobiol, 2004, 3 ( 1 ) : 33 - 47.
  • 8Eiber A, Freitag H G. On simulation models in otology [ J ]. Muhibody System Dynamics, 2002, 8 (2) : 197 - 217.
  • 9姚文娟,李晓青,李武,黄新生.中耳病变及人工镫骨形体研究[J].医用生物力学,2009,24(2):118-122. 被引量:13
  • 10Gan R Z, Dai C, Wang X, et al. A totally implantable hearing system-design and function characterization in 3D computational model and temporal bones [ J ]. Hear Res, 2010, 263(1 -2) : 138 -144.

二级参考文献23

  • 1刘迎曦,李生,孙秀珍.人耳鼓膜病变数值分析[J].医用生物力学,2008,23(4):275-278. 被引量:15
  • 2耿济栋,姚国兴.压电陶瓷阻尼振动的有限元模型分析[J].振动.测试与诊断,2006,26(3):221-225. 被引量:6
  • 3李佳楠,杨仕明,于丽玫,韩东一,杨伟炎.振动声桥[J].临床耳鼻咽喉头颈外科杂志,2007,21(4):190-192. 被引量:9
  • 4范伟,余晓芬,奚琳.压电陶瓷驱动系统及控制方法研究[J].光学精密工程,2007,15(3):368-371. 被引量:32
  • 5Todt I, Seidl R O, Gross M, et al. Comparison of different Vibrant Soundbridge audioprocessors with conventional hearing aids[J]. Otol Neurootol 2002, 23:669-673.
  • 6Nicolas S, Falk S, Daniel W, et al. Long -Term Assessment after Implantation of theVibrant Soundbridge Device [ J ]. Otology & Neurotology, 2006, 27 : 183 - 188.
  • 7Ingo T, Rainer O S, Sven M, et al. MRI Scanning and Incus Fixation in Vibrant Soundbridge Implantation [ J ]. Otology & Neurotology, 2004, 25:969 - 972.
  • 8Bernard F, Jean - Pierre L, Sebastien S, et al. A Muhicenter Study of the Vibrant Soundbridge Middle Ear Implant: Early Clinical Results and Experience [ J ]. Otology & Neurotology, 2001, 22:952 - 961.
  • 9Zhang F, Chen W, Liu J, et al. Bidirectional linear ultrasonic motor using longitudinal vibrating transducers [ J ]. IEEE UFFFC Trans. 2005 ( 1 ) : 134 - 136.
  • 10Jont B. Allen P, Jeng H. Evaluation of human middle ear function via an acoustic power assessment[ J]. Journal of Rehabilitation Research & Development,2005, 42(5): 63-78.

共引文献20

同被引文献72

  • 1Kemp D T. Stimulated acoustic emissions from within the human auditory system [J]. J. Acoust. Soc. Am,1978,64 (5):1386-1391.
  • 2Weiss T F. Bidirectional transduction in vertebrate hair cells:A mechanism for coupling mechanical and electrical processes [J].Hearing Research,1982,7 (3) : 353 - 360.
  • 3Davis H. An active process in cochlear mechanics [J]. Hearing Research,1983,9(1): 79 – 90.
  • 4Neely S T, Kim D O. A model for active elements in cochlear biomechanics [J]. J. Acoust. Soc. Am,1986, 79(5) :1472-1480.
  • 5Kanis L J, de Boer E. Self-suppression in a locally active nonlinear model of the cochlea:A quasilinear approach [J]. J. Acoust. Soc. Am,1993,94 (6) : 3199 – 3206.
  • 6Lim K M, Steele C R. Response suppression and transient behavior in a nonlinear active cochlear model with feed–forward [J]. International Journal of Solids And Structures,2003,40: 5097 – 5107.
  • 7Fukazawa T,Tanaka Y. Spontaneous otoacoustic emissions in an active feed-forward model of the cochlea [J]. Hearing Research,1995,85:135 – 143.
  • 8Geisler C D, Sang C. A cochlear model using feed-forward outer-hair-cell forces [J]. Hearing Research,1995,86:132 – 146.
  • 9Gan R Z, Reeves B P, Wang X L. Modeling of sound transmission from ear canal to cochlea [J]. Annals of Biomedical Engineering,2007,35:2180 – 2195.
  • 10Igarashi M, Ohashi K, Ishii M. Morphometric comparison of endolymphatic and perilymphatic spaces in human temporal bones [J]. Acta Otolaryngol (stockh),1986,101:161 – 164.

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部