期刊文献+

基于极大后验原理的非线性系统传感器故障估计

Sensor Fault Estimation for Class of Nonlinear Systems Using Maximum Posterior Principle
在线阅读 下载PDF
导出
摘要 针对扩展卡尔曼滤波算法(Extended Kalman filter,EKF)计算复杂,粒子滤波算法动态跟踪能力差,单一无先导扩展卡尔曼滤波算法(Unscented Kalman filter,UKF)滤波精度低等缺陷,本文根据极大后验原理(Max-imum posterior principle,MPP),针对一类非线性系统设计了一种改进型的无先导卡尔曼故障估计滤波器来估计被控系统所发生的加性传感器故障。首先根据极大后验估计原理,推导出一种最优常值故障估计器。在此基础之上,推导出次优的加性常值故障估计滤波器,并对故障估计滤波器进行了无偏性证明。最后,将得到的理论结果应用于非线性倒立摆系统,仿真验证了所提方法的有效性。 Owing to the computational complexity of the extended Kalman filter (EKF), the poor dynamic tracking ability of the particle filter algorithm, and the low accuracy of the single unscented Kalman filter (UKF), a designed approach to an improved unscented Kalman fault estimation filter is presented for a class of nonlinear systems based on maximum posterior principle (MPP). It can be used to estimate the sensor fault that occurs in the controlled plant. Firstly, an optimal constant fault estimator is derived according to MPP. Then, a suboptimal additive constant fault estimation filter algorithm is developed. Meanwhile, the proof of the unbiasedness for fault estimation filter is given. Finally, simulation results of an inverted pendulum example show the effectiveness of the proposed approach.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第B07期100-103,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(61074080)资助项目
关键词 极大后验原理 无先导卡尔曼滤波 故障估计 maximum posterior principle (MPP) unscented Kalman filter (UKF) fault estimation
  • 相关文献

参考文献8

  • 1赵琳,王小旭,孙明,丁继成,闫超.基于极大后验估计和指数加权的自适应UKF滤波算法[J].自动化学报,2010,36(7):1007-1019. 被引量:70
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:235
  • 3周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:27
  • 4Park S,,Himmelblau D M.Fault detection and diag-nosis via parameter estimation in lumped dynamicsystems. Industrial and Engineering Chemistry,Process Design and Development . 1983
  • 5J. Yi,N. Yubazaki,K. Hirota.Upswing and stabilization control of inverted pendulum system based on the SIRMs dynamically connected fuzzy inference model. Fuzzy Sets and Systems . 2001
  • 6Polycarpou M M.Fault accommodation of a classmultivariable nonlinear dynamical system using alearning approach. IEEE Trans on AutomaticControl . 2001
  • 7Julier SJ,Uhlmann JK,Durrant-Whyte HF.A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control . 2000
  • 8Givon T.On Understanding Grammar. . 1979

二级参考文献81

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:235
  • 2周东华,控制与决策,1990年,5卷,1期,1页
  • 3周东华,信息与决策,1990年,6卷,1期,1页
  • 4Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 5Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 6Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 7Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 8Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 9Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 10Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.

共引文献319

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部