期刊文献+

聚类有效性的组合评价方法 被引量:18

Ensembling clustering validation indices
在线阅读 下载PDF
导出
摘要 针对现有研究中给出的聚类有效性指标不能有效评价不同结构数据集的聚类结果问题,提出一种使用多个有效性指标进行聚类评价的组合方法。引入D-S(Dempster-Shafer)证据理论对多个有效性指标结果进行集成,并得到最终的聚类评价结果。仿真实验和分析验证了该方法的可行性与有效性。 Clustering validation is a key factor to the success of clustering.One of the approaches to validate the clustering results is clustering validation index.However,there is no general index for all kinds of data structures.A Dempster-Shafer,(D-S) evidence theory based ensemble method for multiple indices is proposed recently,named D-S theory based Validation method(DSV).Experimental results and analysis on various synthetic data sets show that DSV outperforms single clustering validation index.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期15-17,30,共4页 Computer Engineering and Applications
基金 新世纪优秀人才支持计划No.NCET-05-0097~~
关键词 聚类评价 D-S证据理论 有效性指标 聚类数 clustering validation Dempster-Shafer(D-S)evidence theory clustering validation index cluster number
  • 相关文献

参考文献9

  • 1林作铨,牟克典,韩庆.基于未知扰动的冲突证据合成方法[J].软件学报,2004,15(8):1150-1156. 被引量:29
  • 2Dunn J.Well separated clusters and optimal fuzzy partitions[J].J Cybern, 1974,4( 1 ) :95-104.
  • 3Calinski T,Harabasz J.A dendrite method for cluster analysis[J]. Comm in Statistics, 1974,3 ( 1 ) : 1-27.
  • 4Maulik U, Bandyopadhyay S.Performance evaluation of some clustering algorithms and validity indices[J].IEEE PAMI, 2002, 24:1650-1654.
  • 5Sheng W, Swift S,Zhang L,et al.A weighted sum validity func- tion for clustering with a hybrid niching genetic algorithm[J].IEEE Trans SMC-B,2005,35(6) : 1156-1167.
  • 6Yager R R, Liu L.Classic works of the Dempster-Shafer theory of belief funetions[M].New York:Springer Press,2008.
  • 7Rousseeuw P.Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J].J Comput Appl Math,1987, 20( 1 ) : 53-65.
  • 8周世兵,徐振源,唐旭清.新的K-均值算法最佳聚类数确定方法[J].计算机工程与应用,2010,46(16):27-31. 被引量:94
  • 9彭勇,吴友情.一种新的聚类有效性函数[J].计算机工程与应用,2010,46(6):124-126. 被引量:8

二级参考文献38

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:194
  • 2Bezdek J C.Pattem recognition with fuzzy objective function algorithms[M].New York : Plenum Press, 1981.
  • 3Yang M S.A survey of fuzzy clustering[J].Mathematics and Computer Modeling, 1993,18( 11 ) : 1-16.
  • 4Bezdek J C.Numerical taxonomy with fuzzy sets[J].Journal of Mathematical Biology, 1974,7( 1 ) :57-71.
  • 5Bezdek J C.Cluster validity with fuzzy sets[J].Journal of Cybernetics, 1974,3(3):58-72.
  • 6Xie X,Beni G.A validity measure for fuzzy clustering[J].IEEE Trans on PAMI, 1991,13(8):841-847.
  • 7Kown S H.Cluster validity index for fuzzy clustering[J].Electronics Letters, 1998,34 ( 22 ) : 2176-2177.
  • 8Fukuyma Y,Sugeno M.A new method of clustering the number of clusters for the fuzzy C-means method[C}//Proc of 5th Fuzzy Systems Symposium,Kobe,Japan, 1989:247-250.
  • 9Vogel M A,Wong A C.PFS clustering method[J].IEEE Trans on PAMI, 1979,1(3) :237-245.
  • 10Sun H,Wang S,Jiang Q.FCM-based model selection algorithms for determining the number of fuzzy clusters[J].Pattern Recognition, 2003,37(10) : 2027-2037.

共引文献126

同被引文献181

引证文献18

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部