期刊文献+

基于集成金字塔模型的单分类方法 被引量:1

Single-Class Classification Approach Based on Integrated Pyramid Model
在线阅读 下载PDF
导出
摘要 针对单分类提出了一种集成金字塔模型(Single-Class Classification Integrated Pyramid Model,SCCIPM),由综合获取层、辅助判定层、核心分类层和结果优化层4个独立协同的层面组成。其中综合获取层由改进的KNN以及优化的1-DNF两个分类方法组成,主要用来获取反例,其结果均提交到辅助判定层投票后得到可靠反例;核心分类层通过多次迭代更新可靠反例,每次迭代建立一个分类器;结果优化层根据核心分类层所建立的不同分类器优化选择最终分类器。仿真实验表明,当正例占整个样本的50%以下时,SCCIPM较其它方法优势明显,在解决单分类上具有良好的分类性能。 A Integrated Pyramid Model is proposed for Single-Class Classification(Single-Class Classification Integrated Pyramid Model,SCCIPM).This model is composed of four independent collaborative layers by Comprehensive obtain layer,Assistant judgment layer,Kernel classification layer and Optimization layer.Comprehensive obtain layer formed by improved KNN and optimized 1-DNF two classification methods,mainly for obtaining negative examples,results are submitted to Assistant judgment layer voting reliable negative examples.Kernel classification layer update reliable negative examples by several iteration,each iteration establish a classifier.Optimization layer according to Kernel Classification layer of different classifiers,optimally select the final classifier.The simulation experiment result indicates that when positive examples are 50% of total samples below,SCCIPM shows obvious advantages over other methods in solving the Single-Class Classification and has good classification performance.
出处 《计算机科学》 CSCD 北大核心 2011年第6期191-194,共4页 Computer Science
基金 国家自然科学基金(60675030 60875029)资助
关键词 集成金字塔模型 单分类 数据挖掘 Integrated pyramid model Single-class classification Data mining
  • 相关文献

参考文献11

  • 1Yu H. Single-class classification with mapping convergence[J]. Machine Learning, 2005,61 (1-3) : 49-69.
  • 2Liu B,Dai Y,Li X L,et al. Building Text Classifiers Using Posi- tive and Unlabeled Examples[C] // ICDM-03. Melbourne, Flori- da, November 2003 : 19-22.
  • 3Yu H, Han J, Chang K C-C. PEBL: Positive Example Based Learning for Web Page Classification Using SVM[C]//Proc. Ninth Int'l Conf. Knowledge Discovery and Data Mining. 2003.
  • 4Fung G P C, Lu H J. Text Classification Without Negative Ex- amples Revisit[J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18 (1) : 6-20.
  • 5Zhang Bang-zuo, Zuo Wan-li. Learning from Positive and Unla- beled Examples: A Survey[C]//International Symposiums on Information Processing and 2008 International Pacific Workshop on Web Mining and Web-based Application. Moscow, Russia, May 23-25,2008 : 640-644.
  • 6李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 7Figueiredo M A T, Jain A K. Unsupervised learning of finite mixture models[J]. IEEE Trans Patt Anal Mach Intell, 2002,24 (3) :381-396.
  • 8Zhang B Z,Zuo W L. A Novel Reliable Negative Method Based on Clustering for Learning from Positive and Unlabeled Exam- ples[C]//Proceedings of the Asia Information Retrieval Sympo- sium 2008 (AIRS 2008). Harbin, China, January 2008 : 393-400.
  • 9Baily T,Jain A K. A note on distance-weighted k-nearest neigh- bor rules[J]. IEEE Trans. Syst. Man Cybern. , 1978, SMC-8 (4) :311-313.
  • 10Cortes C, Vapnik V. Support-Vector-Networks [J]. Machine Learning, 1995,20(3) : 273-297.

二级参考文献1

共引文献29

同被引文献15

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部