期刊文献+

基于改进蚁群算法的移动机器人动态路径规划方法 被引量:148

Dynamic Path Planning for Mobile Robot Based on Improved Ant Colony Optimization Algorithm
在线阅读 下载PDF
导出
摘要 本文提出了基于改进蚁群算法的移动机器人动态路径规划方法.首先针对蚁群算法收敛速度慢,容易陷入局部最优的缺点,提出了根据目标点自适应调整启发函数,提高算法的收敛速度;借鉴狼群分配原则对信息素进行更新,避免搜索陷入局部最优.其次为了优化改进蚁群算法的性能,提出用粒子群算法对改进蚁群算法的重要参数进行优化选择.最后实现了基于改进蚁群算法的移动机器人动态路径规划并完成了仿真实验,实验结果证明了该方法的可行性和有效性. The dynamic path planning for mobile robot based on improved ant colony optimization algorithm is presented.Firstly,to increase the convergence speed,the heuristic function modified adaptively according to the target point is proposed.To avoid the local optimum,the rule updating the pheromone based on the assignment rule of wolf colony is proposed.Secondly,to optimize the performance of the improved ant colony,the important parameters of the improved ant colony optimization algorithm are optimized by the particle swarm optimization.Finally,the dynamic path planning for mobile robot based on improved ant colony optimization algorithm is implemented and the simulation experiments are finished.From the results,it can see that the dynamic path planning method is viable and efficient.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1220-1224,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60775058) 教育部科学技术研究重点项目基金(No.107028) 中央高校基本科研业务费专项基金(No.108G07)
关键词 移动机器人 路径规划 改进蚁群算法 mobile robot path planning improved ant colony optimization algorithm
  • 相关文献

参考文献13

  • 1LIU Changan CHANG Jingang LIU Chunyang.Path Planning for Mobile Robot Based on an Improved Probabilistic Roadmap Method[J].Chinese Journal of Electronics,2009,18(3):395-399. 被引量:13
  • 2Derek J Bennet, Colin R McInnes. Distributed control of multirobot systems using bifurcating potential fields[J].Robotics and Autonomous Systems, 2010,58 (3) : 256 - 264.
  • 3邓万宇,郑庆华,陈琳,许学斌.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287. 被引量:164
  • 4邢焕来,潘炜,邹喜华.一种解决组合优化问题的改进型量子遗传算法[J].电子学报,2007,35(10):1999-2002. 被引量:56
  • 5Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agent[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996,26( 1 ) :29 - 41.
  • 6Lim Kwee Kim, Ong Yew-Soon,Lim Meng Hiot,et al.Hybrid ant colony algorithms for path planning in sparse graphs E J]. Soft Computing, 2008,12(10) :981 - 994.
  • 7Garcia M A Porta, Montiel Oscar, Casfillo Oscar, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[ J]. Applied Soft Computing,2009,9(3) : 1102 - 1110.
  • 8马卫,朱庆保.求解函数优化问题的快速连续蚁群算法[J].电子学报,2008,36(11):2120-2124. 被引量:34
  • 9Stutzle T, Hoos H H. Max-min ant system and local search for the travelling salesman problem[ A]. IEEE International Conference on Evolutionary Computation[ C ]. Indianapolis: IEEE Press, 1997.309 - 314.
  • 10Botee H M, Bonabeau E. Evolving ant colony optimization [J].Compex System, 1998,1 (2) : 149 - 159.

二级参考文献40

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2Dorigo M,Di Caro G.Ant algorithms for discrete optimization [J]. Artificial Life, 1999,5(2) : 137 - 172.
  • 3Dodgo M,Bonabeau E, Theraulaz G.Ant algorithms and stigmergy[ J ]. Future Generation Computer Systems, 2000, 16(9): 851 - 871.
  • 4Walter Gutjahr J. A graph-based ant system and its convergence [ J]. Future Generation Computer Systems, 2000, 16:873 - 888.
  • 5Bilchev G,Parmee I C. The ant colony metaphor for searching continuous design spaces [A]. Fogarty T. Lecture Notes in Computer Science[C]. Heidelberg: Springer Berlin, 1995.25 - 39.
  • 6Dero J, Siarry P. Continuous interacting ant colony algorithm based on dense heterarchy [ J ]. Future Generation Computer Systems, 2004,5 (20) : 841 - 856.
  • 7Karaboga N, Kalinli A, Karaboga D. Designing digital IIR filters using ant colony optimization algorithm[ J ]. Engineering Application of Artificial InteUigence, 2004,17(2) :301- 309.
  • 8Monmarche N, Venturini G, Slimane M. On how Pachycondyla apicalis ants suggest a new search algorithm[ J]. Future Generation Computer Systems, 2000,16 ( 8 ) : 937 - 946.
  • 9Greene M J, Gordon D M. Cuticular hydrocarbons inform task decisions [ J]. Nature, 2003,423 (6935) : 32.
  • 10Jackson D E, Holcombe M, Ratnieks F L W. Knowing which way to go-trail geometry gives polarity to ant foraging trails [J]. Nature, 2004,432(7019) :907 - 909.

共引文献256

同被引文献1052

引证文献148

二级引证文献1396

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部