期刊文献+

基于最大熵的模糊核聚类图像分割方法 被引量:5

Fuzzy Kernel Clustering Image Segmentation Method Based on Maximum Entropy
在线阅读 下载PDF
导出
摘要 传统聚类算法易陷入局部极值,在数据线性不可分时分类效果较差。为此,提出一种基于最大熵的模糊核聚类图像分割方法。采用最大熵算法对原始图像进行初步分割,求得初始聚类中心;引入Mercer核函数,把输入空间的样本映射到高维特征空间,并在特征空间中进行图像分割。实验结果表明,该方法能减少迭代次数,使分类结果更稳定,从而较好地把目标从背景中分割出来。 The traditional clustering method is prone to fall into local extremum.It is bad to classify when the data is linear inseparable.This paper proposes a fuzzy kernel clustering image segmentation method based on maximum entropy.It applies maximum entropy algorithm to obtain the initial centers and maps the sample from the input space to the feature space by introducing Mercer kernel function into the method.It completes image segmentation in the feature space.Experimental result shows that the method can reduce the iteration time and steady the class result,and effectively segment the target from its background.
作者 沙秀艳 辛杰
出处 《计算机工程》 CAS CSCD 北大核心 2011年第10期187-188,191,共3页 Computer Engineering
基金 国家自然科学基金资助项目(10626046) 中国博士后科学基金资助项目(20070410487) 鲁东大学校基金资助项目(L20072703 L20082703)
关键词 模糊核聚类 最大熵 特征空间 图像分割 fuzzy kernel clustering maximum entropy feature space image segmentation
  • 相关文献

参考文献8

二级参考文献24

  • 1王连亮,陈怀新.基于改进的模糊C-均值的分级递减聚类算法[J].系统工程与电子技术,2005,27(7):1304-1306. 被引量:2
  • 2侯惠芳,刘素华.一种改进的基于遗传算法的模糊C-均值算法[J].计算机工程,2005,31(17):152-154. 被引量:9
  • 3谷淑化,吕维先.基于消息传递的并行聚类算法[J].现代计算机,2006,12(1):82-84. 被引量:3
  • 4Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 5Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 6Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 7Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 8Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 9Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 10Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.

共引文献830

同被引文献43

  • 1赵伟舟,宋建社.基于模糊集的图像阈值分割算法研究[J].微电子学与计算机,2006,23(5):118-120. 被引量:5
  • 2马华,张永,贾桂霞.改进的遗传模糊聚类算法对医学图像的分割[J].计算机工程与设计,2006,27(13):2357-2359. 被引量:5
  • 3范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 4Bczdek JC. Pattern recognition with fuzzy objective function algorithms [ M ]. Bostm : Kluwer Acad'mic Publishers, 1981.
  • 5Liao L,Lin T, Li B. MRI brain image segmentation and bias field correction based on fast spatially constrained kernel clustering approach [ J ]. Pattern Recognition Letters, 2008,29 : 1580-1588.
  • 6Yan MS, Tsai HS. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction [ J ]. Pattern Recognition Letters,2008,29(12) : 1713-1725.
  • 7Liu, C. and Zhang, X. Gaussian kernelized fuzzy c-means withspatial information algorithm for image segmentation [ J ] Journal of Computers,2012,7(6) : 1511-1518.
  • 8Sezgin M, Sankur B.Survey over image threshold tech- niques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13( 1 ):146-168.
  • 9Jiang Frank, Frater M R, Pickering M.Threshold-based image segmentation through an improved particle swarm optimization[C]//2012 International Conf on Digital Image Computing Techniques and Applications,2012.
  • 10Wan Y,Yao L,Xu B G.Automatic segmentation of fiber cross sections by dual threshold[J].Journal of Engineered Fibers and Fabrics,2012,7( 1 ) : 114-120.

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部