期刊文献+

基于Fisher判别分析的贝叶斯分类器 被引量:14

Bayesian Classifier Based on Fisher Discriminant Analysis
在线阅读 下载PDF
导出
摘要 针对满足"类条件属性相互独立"假定的经典贝叶斯分类器无法有效利用类间信息的缺陷,结合Fisher线性判别分析,给出一种基于Fisher线性判别分析的贝叶斯分类器的改进算法。该算法通过寻找类与类最大分离的投影空间,将原样本向最大分离空间投影,以获得新样本,并采用贝叶斯分类器对新样本进行分类。实验结果表明,在给定的数据集上,该贝叶斯分类器的分类正确率较高,分类性能较好。 Classical Bayesian classifier which satisfies the assumption of condition attributes independent of each other can not use between-class information effectively.In order to solve this problem,an improved algorithm of Bayesian classifier combined with Fisher Linear Discriminant Analysis(FLDA) is proposed.This algorithm is the key to search the projection space of maximum separation.The original samples are projected to maximum separation space and new samples are obtained.These new samples are classifed by Bayesian classifier.Experimental results show that improved Bayesian classifier has higher accuracy of classification and better performance of classification in the given data collection.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第10期162-164,共3页 Computer Engineering
关键词 贝叶斯分类器 投影变换矩阵 FISHER线性判别分析 特征向量 Bayesian classifier projection transformation matrix Fisher Linear Discriminant Analysis(FLDA) feature vector
  • 相关文献

参考文献4

二级参考文献28

  • 1王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 2王双成,张邦佐,王辉,苑森淼.基于贝叶斯网络理论的TAN分类器无向依赖扩展[J].小型微型计算机系统,2005,26(1):42-45. 被引量:3
  • 3韩争胜,李映,张艳宁.基于LDA算法的人脸识别方法的比较研究[J].微电子学与计算机,2005,22(7):131-133. 被引量:20
  • 4李云峰,欧宗瑛.基于Gabor小波变换和支持向量机的人脸识别[J].计算机工程,2006,32(19):181-182. 被引量:5
  • 5Hyvarinen A, Oja E. Independent Component Analysis: Algorithms and Application[J]. Neural Networks, 2003, 13(4/5): 411-430.
  • 6Tsang I W, Kwok J T, Zurada J M. Generalized Core Vector Machines[J]. IEEE Transactions on Neural Networks, 2006, 17(5): 1126-1140.
  • 7Samaria F, Harter A. Parameterisation of a Stochastic Model for Human Face Identification[C]//Proc. of the 2nd IEEE Workshop on Applications of Computer Vision. Sarasota, FL, USA: [s. n.], 1994.
  • 8Tsang 1 W, Kocsor A, Kwok J T. Simpler Core Vector Machines with Enclosing Balls[C]//Proc. of the 24th International Conference on Machine Learning. Corvallis, Oregon, USA: [s. n.], 2007.
  • 9Fried N, Geiger D, Goldszmidt M, et al. Bayesian network classifiers [J]. Machine Learning, 1997, 29(2-3): 131 ~163.
  • 10Langley P, Iba W, Thompson K. An analysis of Bayesian c lassifiers [A]. Proceedings of the Tenth National Conference on Artificial Intelligence [C]. Menlo Park, USA: AAAI Press, 1992.223 ~ 228.

共引文献36

同被引文献124

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部