期刊文献+

重用最大频繁模式的可持续进化算法 被引量:1

Sustainable Evolutionary Algorithm for Reusing Maximum Frequent Patterns
在线阅读 下载PDF
导出
摘要 为了重用进化过程中沉淀在优秀个体集中的信息,设计了最大频繁序列模式挖掘算法,并在其基础上提出了重用最大频繁模式的可持续进化算法(MFPEA).该算法设置了多个不同层次的种群为不同适应度水平的个体提供生存空间,采用最大频繁序列模式挖掘算法挖掘种群中的优良基因,并将具有优良基因模块的新个体注入到不同适应度水平的种群中.文中还设计了针对不同问题动态调整进化种群规模的函数,通过一组统计数据研究了平衡计算时间与进化质量的相关参数.实验结果表明,MFPEA在维持遗传信息稳定性、避免早熟收敛方面表现良好,且获得了xit1083问题的新最优解记录(3611.496). In order to make good reuse of the information precipitated in excellent individuals during the evolutionary process,a maximal frequent sequential pattern mining algorithm(MFSPMA) is proposed,based on which a sustainable evolutionary algorithm for reusing the maximum frequent patterns is put forward and is abbreviated to MFPEA.In MFPEA,several subpopulations are adopted to provide survival space for the individuals with different fitness levels,MFSPMA is used to extract excellent genes from the population,and new individuals with excellent gene schema are poured into the subpopulations to stabilize the inheritance of genetic information.Furthermore,a self-adaptive function is designed to adjust the population size for different problems,and a series of statistical data is used to investigate the parameters balancing the computation time and the evolutionary quality.Experimental results show that MFPEA performs good functions in maintaining information stability and avoiding premature convergence,and that it sets a new tour record,namely 3 611.496,for the xit1083 instance.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第5期115-119,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 教育部新世纪优秀人才支持计划项目(NCET09-0094) 国家自然科学基金资助项目(60975049) 贵州省科学技术基金资助项目(黔科合J字[2010]2095号)
关键词 最大频繁序列模式 序列挖掘 基因重用 可持续进化算法 旅行商问题 maximal frequent sequential pattern sequence mining gene reuse sustainable evolutionary algorithm traveling salesman problem
  • 相关文献

参考文献13

  • 1Cheng Ze,Ventura Mario,She Xinwei,et al.A genomewide comparison of recent chimpanzee and human segmen-tal duplications[J].Nature,2005,437 (7055):88-93.
  • 2Hu J,Goodman E,Seo K,et al.The hierarchical fair competition(HFC) framework for sustainable evolutionary algorithms[J].Evolutionary Computation,2005,13 (1):52-67.
  • 3Xie Qingsheng,Xu Lizhang,Li Shaobo.HFCSA:a sustainable simulated annealing algorithm based on HFC model[C] //Proceedings of International Conference on Mechatronics and Automation.Los Alamitos:IEEE Computer Society,2007:3111-3116.
  • 4Sebastian Risi,Sandy Vanderbleek,Charles Hughes,et al.How novelty search escapes the deceptive trap of leaming to learn[C] //Proceedings of the Genetic and Evolutionary ComputatiOn Conference.New York:ACM,2009:1-8.
  • 5Michael Neill,Leonardo Vanneschi,Steven Gustafson,et al.Open issues in genetic programming[J].Genetic Programming and Evolvable Machines,2010,11 (3/4):339-363.
  • 6Rashidi E,Jabandar M,Zandieh M.An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines[J].The International Journal of Advanced Manufacturing Technology,2010,49 (9/10/11/12):1129-1139.
  • 7黄东,唐俊,汪卫,施伯乐.CuMen:基于最大频繁序列模式的聚类算法及其在基因拼接中的应用[J].计算机科学,2005,32(10):149-153. 被引量:4
  • 8Lo David,Khoo Siau-cheng,Li Jinyan.Mining and ranking generators of sequential patterns[C] //Proceedings of 8th SIAM International Conference on Data Mining.Philadelphia:SIAM,2008:553-564.
  • 9Lin Jie-ru,Hsieh Chia-ying,Yang Don-lin,et al.A flexible and efficient sequential pattern mining algorithm[J].International Journal of Intelligent Information and Database Systems,2009,3 (3):291-310.
  • 10Marc Plantevit,Anne Laurent,Dominique Lauren,et al.Mining multidimensional and multilevel sequential patterns[J].ACM Transactions on Knowledge Discovery from Data,2010,4(1):1-37.

二级参考文献11

  • 1Jian P, Han JW, Morta-zavi-Asl B, et al. Mining Sequential Patterns by Prefix-Projected Growth. ICDE, 2001. 215~224
  • 2Foster I,Kesselman C. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1998
  • 3OGSA(Open Grid Services Architecture) Documents. http:∥www. globus. org/ogsa
  • 4Globus: Research in Resource Management. http:∥ www. globus. org/research/
  • 5Foster I, Kesselman C. The globus project: A status report. In:Proc. The Heterogeneous Computing Workshop, 1998. 4~18
  • 6Mullikin J C,Ning Z. The Phusion Assembler. Genome Research,2003,13(1) :81~90
  • 7Wang JY, Han JW. BIDE: Efficient Mining of Frequent Closed Sequences. In: 20 Intl. Conf. on Date Engineering
  • 8http:∥www. phrap. org
  • 9http:∥www. ncbi. nlm. nih. gov/blast/
  • 10Wang J, Wang J, Yang HM, et al. RePS A: Sequence Assembler That Masks Exact Repeats Identified from the shotgun Data. Genome Research, 2002,12 : 824~831

共引文献3

同被引文献10

  • 1MASRY E. Random sampling of deterministic signals: statistical analysis of Fourier transforms estimates[J].IEEE Transactions on Signal Processing, 2006, 54(5):1750-1761.
  • 2TOR P, JOURDAIN B. Adaptive optimal allocation in stratified sampling methods[J].Methodology and Computing in Applied Probability,2010, 12(3):335-360.
  • 3AHMAD B I, TARCZYNSKI A. Spectral analysis of stratified sampling: a means to perform efficient multiband spectrum sensing[J].IEEE Transactions on Wireless Communications, 2012,11(1):178-187.
  • 4GIEL O, LEHRE P K. On the effect of populations in evolutionary multi-objective optimisation[J].Evolutionary Computation, 2010, 18(3): 335-356.
  • 5BUI L T, ABBASS H A, ESSAM D. Localization for solving noisy multi-objective optimization problems[J].Evolutionary Computation, 2009, 17(3): 379-409.
  • 6XING LING-NING, CHEN YING-WU, YANG KE-WEI, et al. A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem[J].Engineering Applications of Artificial Intelligence, 2008, 21(8): 1370-1380.
  • 7XING LING-NING, ROHLFSHAGEN P, CHEN YING-WU, et al. An evolutionary approach to the multidepot capacitated arc routing problem[J].IEEE Transactions on Evolutionary Computation, 2010, 14(3): 356-374.
  • 8XING LING-NING,CHEN YING-WU,WANG PENG,et al. A knowledge-based ant colony optimization for flexible job shop scheduling problems[J].Applied Soft Computing Journal, 2010,10(3): 888-896.
  • 9XING LING-NING, ROHLFSHAGEN P, CHEN YING-WU, et al. A hybrid ant colony optimization algorithm for the extended capacitated arc routing problem[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2011, 41(4): 1110-1123.
  • 10DORRIE H. 100 great problems of elementary mathematics: their history and solution[M]. New York: Dover Publications, 1965: 37-39.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部