期刊文献+

一种改进的基于活动轮廓和光流的运动目标分割方法 被引量:6

An improved moving objects segmentation method based on optical flow technique and active contour model
在线阅读 下载PDF
导出
摘要 将光流技术和几何活动轮廓模型结合起来对运动目标进行分割,一方面可以通过算法分割出运动目标轮廓,另一方面,使得算法面对背景变化的情况仍具有一定的适应性。为了更好地将二者结合起来,进行2个方面的改进:建立基于运动边缘的几何活动轮廓模型,从而克服光流计算中由弱纹理区域产生的运动空洞对分割的影响;引入边缘增强的非线性扩散作为光流计算模型中的平滑项约束,可以在平滑流场的同时减小运动边缘处平滑效果而保护边缘,进而提高运动目标分割的完整性。研究结果表明:与现有算法相比较,该算法能够更准确地分割出运动目标的轮廓,同时在一定程度上克服背景运动的情况。 Combining the optical flow technique and geometric active contour model to segment moving objects is a promising method.It not only can segment the contour of target accurately but also can be extended to the case with dynamic background.In order to combined these two techniques more effectively,two sides were improved: A new active contour model,which was based on motion edges,was proposed,so the impacts from low textured motion areas can be eliminated;reducing smoothing at those locations where edges in the flow field occur during the computation,the edge-enhancement nonlinear diffusion constraint was chosen as a smoothness term in optical flow computation.Then the flow field could preserve the motion discontinuities which were important information to segmentation,so a better segmentation result could be gotten.The experimental results show that this algorithm performs well,even in the situation of dynamic background.Compared with other methods,more accurate results can be gotten by this method.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期1035-1042,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金重点资助项目(90820302)
关键词 光流 活动轮廓模型 非线性扩散 运动目标分割 optical flow active contour model nonlinear diffusion moving objects segmentation
  • 相关文献

参考文献15

  • 1Polley R L, Max Q H M, Peter X L. Optical flow and active contour for moving object segmentation and detection in monocular robot[C]//IEEE Conference on Robotics and Automation. Orlando, Florida: IEEE Comput Soc, 2006: 4075-4080.
  • 2Smith S M, Brady J M. ASSET-2: Real-time motion segmentation and shape tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 814-820.
  • 3Giachetti A, Campani M, Torre V. The use of optical flow for the autonomous navigation[J]. IEEE Transactions on Robotics and Automation, 1998, 14(1): 34-48.
  • 4Muford D, Shan J. Optimal approximation by piecewise smooth functions and associated variational problems[J]. Communication Pure Apply of Mathematics, 1989, 42(4): 577-685.
  • 5Chan T, Vese L. Active contours without edges[J]. IEEE Transaction on Image Processing, 2001, 10(2): 266-277.
  • 6万成凯,袁保宗,苗振江.一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法[J].中国科学(F辑:信息科学),2009,39(4):391-396. 被引量:6
  • 7Zinbi Y, Chahir S. Moving object segmentation using optical flow with active contour model[C]//IEEE Conference on ICTTA. Damascus: IEEE Comput Soc, 2008:273 276.
  • 8Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1/3): 185-203.
  • 9Bruhn A, Weickert J. Lucas-Kanade meets Hom-Schunck: Combining local and global optical flow methods[J]. International Journal of Computer Vision, 2005, 61(3): 211-231.
  • 10Nagel H, Enkelmann W. An investigation of smoothness constraints for the estimation of displacement vector field from image sequence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(5): 565-593.

二级参考文献11

  • 1Michael Kass,Andrew Witkin,Demetri Terzopoulos.Snakes: Active contour models[J]. International Journal of Computer Vision . 1988 (4)
  • 2Sundaramoorthi G,,Yezzi A,Meunuccis A,et al.Sobolevactive contours. Proceedings of the 3rd International workshop on Variational,Geometric,and Level Set Methods in Computer Vision.VLSM . 2005
  • 3Kass M,Witkin A,Terzopoulos D,et al.Active cont our models. International Journal of Computer Vision . 1988
  • 4Chan T F,Vese L A.Active contours without edges. IEEE Transactions on Image Processing . 2001
  • 5Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 6N. Howe,A. Deschamps.Better Foreground Segmentation Through Graph Cuts. http://arxiv.org/abs/cs.CV/0401017 .
  • 7Sun Y D,Li B,Yuan B Z, et al.Better foreground segmen-tation for static cameras via new energy form and dynamic graph-cut. International Conference on Pattern Recogni-tion . 2006
  • 8BOYKOV Y,JOLLY MP.Interactive graph cuts for optimal bound-ary and region segmentation of objects in N-D images. Pro-ceedings of Eighth IEEE International Conference on Computer Vi-sion . 2001
  • 9Mansouri,A.R.Region tracking via level set pdes without motion computation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • 10Suri,JS,Liu,K,Singh,S,Laxminarayan,SN,Zeng,X,Reden,L.Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans Inform Technol Biomed . 2002

共引文献5

同被引文献70

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部