期刊文献+

混沌关联维数在人脑状态区分中的应用 被引量:1

Chaos Correlation Dimension in Distinguishing the Human Brain State
暂未订购
导出
摘要 随着信号处理技术的发展,人们对脑电信号的计算和分析日益深入,以期进一步理解和认知大脑的功能。研究人脑在不同状态下的脑电信息,可以进一步揭示各种状态对于脑活动和脑电的影响。近年来,灰色理论和混沌理论的研究广泛应用于信号处理领域。根据脑电信号自身的特点,提出一种结合灰色建模理论和混沌理论关联维数的人脑状态识别新方法。首先对脑电数据进行灰色建模,然后对所得到的模型参数进行关联维数的计算,从而对人脑的状态进行区分。当取16 000点脑电数据计算关联维数时,传统G-P算法用于计算关联维数的数据点数是本方法的8倍。在计算时间上,传统G-P算法用时145.5 s,而本方法用时9.2 s。结果表明,本方法能够减少计算数据量,进而缩短运算时间。由于不同状态脑电信号的较大特征值非常接近,所以奇异谱与不同状态脑电信号的关联维数相比,关联维数可以更好地区分人脑的状态。 With the development of signal technology,people deeply explore the calculation and analysis of EEG to further understand the functions of the brain.Studying the EEG information of the different states could unveil the impact of the different states on brain activity.The grey theory and chaos theory are widely used in signal processing in recent years.Due to the characteristics of EEG signal,a new approach of combining grey model and correlation dimension in chaos is proposed.1) set up the GM(1,1) of EEG signal;2) apply the model parameters to distinguish the different states in human brain.When calculate correlation dimension with 16 000 points of EEG data,the data points for the proposed method is only 1 /8 of those for G-P algorithm.This new method can significantly reduce the amount of data and thus reduce computation time,and could also effectively distinguish the different states in human brain.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第2期206-212,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(30470459) 西北工业大学基础研究基金(W018102)
关键词 脑电 灰建模 混沌关联维数 electroencephalograph(EEG)signal gray model(GM) chaotic correlation dimension
  • 相关文献

参考文献9

二级参考文献34

  • 1刘大路,江朝晖,冯焕清,王聪.基于脑电信号时空分布信息的思维特征研究[J].北京生物医学工程,2004,23(2):112-115. 被引量:2
  • 2白树林,谢松云,张玉梅,杨金孝.基于灰色系统理论的脑电特征提取[J].贵州工业大学学报(自然科学版),2005,34(6):55-59. 被引量:6
  • 3Grace R. Drowsy driver monitor and warning system[ C ]. International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design. Aspen, USA. 2001.
  • 4Van Orden K,Limbert W,Makeig S,Jung T P. Eye activity correlates of workload during a visualspatial memory task [ J ]. Human Factors. 2001,43( 1 ) :111 - 121.
  • 5Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual [ J ]. International Journal of Neuroscience. 1990,52:29 - 37.
  • 6A Rechtschaffen and A Kales, A manual of standardized terminology, techniques and scoring for sleep stages of human subjects. Wash. DC : US Government Printing Office, 1968.
  • 7Croft R. J. , Barry R. J. Removal of ocular from the EEG : a review [J]. Neurophysiol Clin. 2000,30(2) :5 -19.
  • 8Shen K. Q. , Ong C. J. , Li X. P. , et al. A Feature Selection Method for Multilevel Mental Fatigue EEG Classification [ J ]. IEEE transactions on biomedical engineering. 2007,57 (7) : 1231 - 1237.
  • 9Lin C. T. , Wu R. C. , Liang S. F. , et al. Estimating Driving Performance Based on EEG Spectrum Analysis[ J]. EURASIP Journal on Applied Signal Processing 2005,19:3165 -3174.
  • 10Japa B. T. , Lala S, FischerbP. , et al. Using EEG spectral components to assess algorithms for detecting fatigue[J]. Expert Systems with Applications. 2009,36 ( 2 ) :2352 - 2359.

共引文献38

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部