期刊文献+

自适应梯度Boosting算法及多硝基芳香族化合物密度的主因子选择 被引量:2

Selecting the Main Factors Influencing the Densities of Polynitroaromatic Compounds via Adaptive Gradient Boosting Algorithm
在线阅读 下载PDF
导出
摘要 用自适应梯度Boosting算法研究了影响多硝基芳香族化合物(PNACs)密度的主因子。选择分子结构描述码作影响特征参数,采用影响多硝基芳香族化合物密度的分子结构描述码,依据相关影响程度给出了相应分子结构描述码,预测密度值与文献值的相对误差在10%以内。 The main factors affecting the densities of polynitroaromatic compounds(PNACs) were studied by using the adaptive gradient Boosting algorithm.The molecular structure describers(MSDs) are used as the input feature parameters.The MSDs affecting the densities of PNACs are chosen and the corresponding MSDs are given according to their relative degree of influencing.The relative error between the predicted values and literature ones of the densities of PNACs is within 10%.
出处 《火炸药学报》 EI CAS CSCD 北大核心 2011年第2期12-16,共5页 Chinese Journal of Explosives & Propellants
关键词 学习算法 BOOSTING算法 多硝基芳香族化合物 主因子 learning algorithm Boosting algorithm PNACs main factor
  • 相关文献

参考文献15

  • 1Valiant LG.A theory of the leamabl[M].New York:ACM Press,1984.
  • 2Kearns M,Valiant LG.Learning boolean formulae or factoring,TR-1488[R].Cambridge,MA:Havard University Aliken Computation Laboratory,1988.
  • 3Schapire R.The strength of weak learnability[J].Machine Learning 5,1990:197-227.
  • 4Freund Y,Schapire R.Boosting a weak learning algorithm by majority[J].Information and Computation,1995,121(2):256-285.
  • 5Freund Y,Schapire R.A decision-theoretic generalization of on-line learning and application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139.
  • 6Schapire R.The Boosting approach to machine learning:an overview.In MSRI Workshop on Nonlinear Estimation and Classification.Springer,2002.
  • 7Breiman L.Arcing classifiers (with discussion)[J].The Annals of Statistics,1998,26:801-849.
  • 8Breiman L.Predictions games &.arcing algorithms[J].Neural Computation,1999,11:1493-1517.
  • 9Friedman J,Hastie T,Tibshirani R.Additive logistic regression:A statistical view of boosting (with discussion)[J].The Annals of Statistics,2000,28:337-407.
  • 10Friedman J.Greedy function approximation:A gradient boosting machine[J].The Annals of Statistics,2001,29:1189-1232.

二级参考文献14

  • 1张向东,赵立群,张国义.人工神经网络法预测有机物基础物性[J].化工学报,1995,46(1):66-74. 被引量:17
  • 2刘建民,唐少春,徐复铭,周伟良.基于ANN的丁羟复合推进剂燃速预测[J].火炸药学报,2006,29(3):13-16. 被引量:6
  • 3蔡弘华,田德余,林振天,刘剑洪,洪伟良.利用ANN法预估芳香族多硝基化合物的密度[J].火炸药学报,2007,30(3):9-15. 被引量:7
  • 4David R L.CRC Handbook of Chemistry and Physics[M].73rd Edition.Boca Raton:CRC Press,1992-1993.
  • 5田德余.常用化合物性能数据手册[M].长沙:湖南科技出版社,1998.
  • 6TIAN De-yu.Common Compounds Properties Data Handbook[M].Changsha:Hunan Science and Technology Press,1988.
  • 7康赐荣.BP算法参数选择及应用[M].泉州:科学技术出版社,1995.
  • 8Ridgeway G,Madigan D,Richardson T.Boosting methodology for regression problems[C]//7th Int Workshop on Artificial Intelligence and Statistics.San Francisco:Morgan Kaufmann Publishers,1999.
  • 9Valiant L G.A theory of weak learnability[J].Com-munications of the ACM,1984:27(11):1134-1142.
  • 10Schapire R.The strength of weak learnability[J].Machine Learning,1990(5):197-227.

共引文献6

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部