期刊文献+

一种混合的网络蠕虫检测方法

Hybrid Worm Detection Approach
在线阅读 下载PDF
导出
摘要 提出一种综合采用网络蠕虫行为检测和网络蠕虫反馈检测的混合蠕虫检测方法.在网络蠕虫行为检测方面,将一个局域网作为一个访问模型对于蠕虫进行检测.在网络反馈蠕虫检测方面,利用网络对于蠕虫攻击反馈的信息作为网络反馈检测方法的特征.然后,通过CUSUM(Cumu lative Sum)算法将以上两种检测方法综合考虑来提高网络蠕虫检测的准确性.实验结果表明本文提出的方法可以准确高效地检测网络蠕虫. A hybrid worm detection approach which utilizes worm behavior and network feedback detection is presented.As for worm behavior detection,the local network is considered as an access model to detect worms.As for network feedback detection of worm,the feedback information which is generated by network is considered as the features of detection.Then CUSUM(Cumulative Sum) algorithm is utilized to improve the accuracy of worm detection by comprehensive consideration of the detection approaches above.The experimentation indicates that this approach can accurately and effectively detect Internet worms.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第5期920-923,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60873068)资助 辽宁省自然科学基金项目(20102083)资助 辽宁省教育厅高等学校科研计划项目(20060349)资助 中国博士后科学基金面上项目(20100471474)资助 辽宁大学"211工程"三期<极端计算技术>子项目资助 辽宁大学青年科研基金项目(2009LDQN39)资助
关键词 网络安全 蠕虫 蠕虫行为检测 网络反馈的蠕虫检测 CUSUM算法 network security worm worm behavior detection network feedback detection of worm cumulative sum algorithm
  • 相关文献

参考文献3

二级参考文献26

  • 1杨峰,段海新,李星.网络蠕虫扩散中蠕虫和良性蠕虫交互过程建模与分析[J].中国科学(E辑),2004,34(8):841-856. 被引量:27
  • 2文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 3王佰玲,方滨兴,云晓春,张宏莉,陈博,刘乙璇.基于平衡树的良性蠕虫扩散策略[J].计算机研究与发展,2006,43(9):1593-1602. 被引量:8
  • 4DENNING D. An intrusion detection model[J]. IEEE Transactions on Software Engineering, 1987, 13(2):222-232.
  • 5ANDERSON D, FRIVOLD T, VALDES A. Next-Generation Intrusion Detection Expert System (hides) a Summary[R]. Technical Report SRI-CSL-95-07, SRI International, 1995.
  • 6BERK V H, GRAY R S, BAKOS G. Using sensor networks and data fusion for early detection of active worms[A]. Proceedings of the SPIE eroSense[C]. 2003.92-104.
  • 7ZOU C C, GONG W, TOWSLEY D. Worm propagation modeling and analysis under dynamic quarantine defense[A]. ACM CCS Workshop on Rapid Malcode[C]. Washington DC, USA :ACM, 27,2003.51-60.
  • 8SIRIS V A, PAGAALOU F. Application of anomaly detection algorithms for detecting SYN flooding attacks[A]. IEEE Global Telecommunications Conference[C]. 2004. 2050-2054.
  • 9VALDES, SKINNER K. Adaptive, model-based monitoring for cyber attack detection[A]. Proceedings of the 3th International Symposium on Recent Advances in Intrusion Detection[C]. 2000.80-92.
  • 10MANKU G S, MOTWAN R. Approximate frequency counts over data streams[A]. Proc of 22nd Intl Conf on Very Large Data Bases[C]. HK,China, 2002. 346-357.

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部