期刊文献+

整体式焦油裂解催化剂的制备及性能研究

PREPARATION AND PERFORMANCE OF MONOLITHIC CATALYST FOR TAR CRACKING
原文传递
导出
摘要 以堇青石为载体,采用真空浸渍法制备整体式镍基催化剂,研究了不同干燥方法对整体式催化剂内表面活性组分轴向分布的影响及不同工艺条件下的催化性能。结果表明:微波干燥法所得催化剂内表面活性组分轴向分布最均匀;重时空速对焦油裂解率的影响较大,当重时空速为177kg/(h·m3)时,焦油裂解率高达92.62%,H2的体积分数为46.53%;在较低温度条件(700~800%)下,催化温度对焦油裂解的影响较小,当催化温度上升到900℃时,焦油裂解率大幅上升,单位质量生物质气体产率高达1.22Nm3/k。 The Ni-based monolithic catalyst was prepared by vacuum impregnation with the support of cordierite. The influences of different drying methods to the axial distribution of active constituent in monolithic catalyst internal surface and the catalytic performance under different process conditions was studied. The results show that the axial distribution of catalyst internal surface active constituent is more homogeneous after microwaves drying. The weight hour space velocity (WHSV) has great influence on tar cracking rate. When the WHSV is 177kg/(h·m3), the tar crocking rate is 92.62% and H2 volume content is 46.53%. When the catalytic temperature is between 700- 800℃, the variety of tar cracking rate is small, but when catalytic temperature rises to 900℃, the tar cracking rate can increase greatly and the gas yield can reach 1.22Nm3/kg per dried biomass.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2011年第4期451-455,共5页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(50606037) 中国科学院知识创新工程重要方向项目(KGCX2-YW-335)
关键词 堇青石 整体式催化剂 焦油裂解率 重时空速 催化温度 cordierite monolithic catalyst tar conversion weight hour space velocity catalytic temperature
  • 相关文献

参考文献11

  • 1Bemdes G, Hoogwijk M, Broek R V. The contribution of biomass in the future global energy supply: A review of 17 studies[J]. Biomass Bioenergy, 2003, 25(1): 1--28.
  • 2Rapagna S, Jand N, Kiepalemann A, et al. Steam-gasification of biomass in a fluidised-bed of olivine particles[J]. Biomass and Bioenergy, 2000, 19(3): 187--197.
  • 3Hu Guan, Xu Shaoping, Li Shiguang, et al. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts[ J ]. Fuel Processing Technology, 2006, 87 ( 5 ) : 375--382.
  • 4Kimura Takeo, Miyazawa Tomohisa, Nishikawa Jin, et al. Development of Ni catalysts for tar removal by steam gasification of biomass[J]. Applied Catalysis B: Environmental, 2006, 68(3-4): 160--170.
  • 5Lv Pengmei, Yuan Zhenhong, Wu Chuangzhi, et al. Biosyngas production from biomass catalytic gasification[J]. Energy Conversion and Management, 2007, 48 (4) : 1132-- 1139.
  • 6王铁军,常杰,吴创之,付严,陈勇.生物质焦油裂解催化剂制备及其催化裂解性能[J].煤炭转化,2003,26(1):89-93. 被引量:21
  • 7Nordgreen Thomas, Liliedahl Truls, Sjostrom Krister. Metallic iron as a tar breakdown catalyst related to atmospheric, fluidized bed gasification of biomass[J]. Fuel, 2006, 85(5-6) : 689-694.
  • 8Tomishige Keiichi, Asadullah Mohammad, Kunimori Kimio. Syngas production by biomass gasification using Rh/CeO2/ SiO2 catalysts and fluidized bed reactor[J]. Catalysis Today, 2004, 89(4): 389--403.
  • 9赵阳,郑亚锋,辛峰.整体式催化剂性能及应用的研究进展[J].化学反应工程与工艺,2004,20(4):357-362. 被引量:31
  • 10Villegas L, Masset F, Guilhaume N. Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on antothermal reforming activity [ J ]. Applied Catalysis, 2007, 320: 43--55.

二级参考文献16

  • 1[1]Coll R,Salvao J,Farriol X et al. Steam Reforming Model Compounds of Biomass Gasification Tars:Conversion at Different Operating Conditions and Tendency Towards Coke Formation. Fuel Processing Technology, 2001,74:19-31
  • 2[2]Zhao Hongbin, Draelants D J. Baron G V. Preparation and Characterisation of Nickel-modified Ceramic Filters. Catalyis Today, 2000,56: 229-237
  • 3[3]Sutton D,Kellenher B,Ross J R H. Review of Literature on Catalysts for Biomass Gasification. Fuel Processing Technology,2001,73 : 155-173
  • 4[4]Courson C. Makaga E. Petit C et al. Development of Ni Catalysts for Gas Production from Biomass Gasification. Reactivity in Steam-and Dry-reforming. Catalysts Today, 2000,63: 427-437
  • 5[5]Hasler P,Nussbaumer T. Sampling and Analysis of Particles and Tars from Biomass Gasifiers. Biomass and Bioenergy,2000,18:61-66
  • 6[1]Cybulski A, Moulijn J A. Structure Catalysts and Reactors. New York: Marcel Dekker, 1998, 15~284
  • 7[3]Groppi G, Tronconi E. Simulation of Structure Catalytic Reactor with Enhanced Thermal Conductivity for Selective Oxidation Reaction. Catalysis Today, 2001, 69(1) :63~73
  • 8[4]Crezee E, Barendregt A, Kapteijn F, et al. Carbon Coated Monolithic Catalysts in Selective Oxidation of Cyclohexanone. Catalysis Today, 2001, 69(3):283~290
  • 9[5]Schneider R, Kiessling D, Wendt G. Cordierite Monolithic Supported Perovskite-Type-Catalysts for the Total Oxidation of Chlorinated Hydrocarbons. Applied Catalysis B, 2000, 28(3):187~195
  • 10[6]Edvinsson A R, Nystromm M, Siverstrom M, et al. Development of a Monolithic-Based Process for H2O2 Production: from Idea to Large-Scale Implementation. Catalysis Today, 2001, 69 (3): 247~252

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部