期刊文献+

基于多目标优化算法的发动机进气道设计 被引量:4

Design of engine inlet based on multi objective optimization algorithm
原文传递
导出
摘要 在发动机进气道满足性能的基础上采用多目标优化方法对其结构进行多目标优化设计。提出了利用多目标进化算法的优化策略对进气道进行优化设计,选取进气道气流转折角作为设计变量,在进气道尺寸以及流量的约束条件下,采用Halton序列产生初始均匀种群,利用Pareto的非支配排序的方法对发动机进行优化设计以达到尽可能小的阻力系数、尽可能大的总压恢复系数和进气道升压。通过文中设计的多目标进化算法对发动机进气道进行优化设计,得到的优化解均优于初始设计的Pareto最优解,表明多目标进化算法较强的适应能力,达到了进气道优化设计的目的,为发动机进气道的优化设计提供了参考。 Multi objective optimization design on the engine inlet structure was carried out by applying multi objective optimization algorithm and on the basis that engine inlet can meet its performance. It is proposed to optimize the inlet design by using the optimization strategy of multi objective evolutionary algorithm. By taking the flow turning angles of the inlet as the design variables, under the condition that inlet size and flow rate are restrained, by using the Hahon sequence to generate the initial uniform population, the engine design was optimized by applying Paxeto's non-dominated sorting method In order to allow possible minimum resistance coefficient, available maximum total pressure restoration factor and allowable minimum inlet pressure increase. By using the multi objective evolutionary algorithm designed in this paper to carry out optimization design of the engine inlet, the optimization solutions obtained are superior to those of Pareto for the initially design. The result shows that the objective of inlet optimization design is reached because of the much stronger adaptability of this multi objective evolutionary algorithm, offering a good reference for engine inlet design.
出处 《机械设计》 CSCD 北大核心 2011年第4期75-79,共5页 Journal of Machine Design
关键词 发动机 进气道 多目标优化算法 优化设计 PARETO前沿 Halton序列 engine inlet multi objective optimization algorithm optimization design Pareto front Halton sequence.
  • 相关文献

参考文献8

二级参考文献43

  • 1黄志澄.空天飞机喷管的气动设计[J].气动实验与测量控制,1993,7(4):1-10. 被引量:3
  • 2师瑞锋 方卫国.遗传算法在飞机方案优化中的应用研究[J].北京航空航天大学学报,2001,27:21-24.
  • 3[1]Srinivas N, Deb K. Multiobjective function optimization using nondominated sorting genetic algorithms [J].Evolutionary Computation, 1995, 2(3): 221
  • 4[2]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization [A]. In: Forrest S. Proceedings of the Fifth International Conference on Genetic Algorithms [C]. San Mateo: Morgan Kauffman, 1993. 416
  • 5[3]Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization [A]. In: Michalewicz Z editor, Proceedings of the First IEEE Conference on Evolutionary Computation [C].Piscataway: IEEE Service Center, 1994.82
  • 6[4]Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-A comparative case study [A]. Parallel Problem Solving from Nature V [C]. Berlin, 1998.292~301.
  • 7[5]Deb K. Multiobjective genetic algorithms: Problem difficulties and construction of test Functions [J]. Evolutionary Computation, 1999,7(3): 205
  • 8[6]Rudolph G. Evolutionary search under partially ordered sets [R]. Technical Report No. CI-67/99, Dortmund: Department of Computer Science/LS11, University of Dortmund, 1999
  • 9[7]Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation. 1999, 8(2): 173
  • 10[8]Knowles J, Corne D. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization [A]. In: Proceedings of the 1999 Congress on Evolutionary Computation [C]. Piscatway: IEEE Service Center, 1999. 98

共引文献84

同被引文献35

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部