期刊文献+

基于神经网络的用户兴趣度估计 被引量:5

Estimation of User Interest Degree Based on Neural Network
在线阅读 下载PDF
导出
摘要 针对个性化服务研究中用户兴趣度估计的要求,分析用户行为特征与兴趣度的相互关系,选取页面关注时间、滚动/翻页次数、页面大小作为用户兴趣度的判别依据,提出一种基于RBF神经网络模型的用户兴趣度量化估计方法。仿真实验证明,与多元线性回归模型的计算结果相比,该方法在平均残差和预测准确度方面均有更好的效果。 The Aiming at the requirements for estimating the user interest degree in the personalization services researching,this paper analyzes the relationship between the characteristics of user's behavior and the interest degree and selects the page-concerned time,number of page rolling and page size as the implicit indicators,then proposes a method based on RBF neural network to quantitatively estimate the user interest degree.Experimental results show that compared with the multiple linear regression model,this method achieves better results both on the average residuals and the predicting accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第7期187-189,192,共4页 Computer Engineering
基金 国家科技支撑计划基金资助项目(2008BAH28B04)
关键词 个性化服务 用户兴趣度 RBF神经网络 personalization service user interest degree RBF neural network
  • 相关文献

参考文献10

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:396
  • 2Kellar M,Watters C,Duffy J,et al.Effect of Task on Time Spent Reading as an Implicit Measure of Interest[C]//Proc.of American Society for Information Science and Technology.Providence,USA:Citeseer,2004:168-175.
  • 3Halabi W S A,Kubat M,Tapia M.Time Spent on a Web Page Is Sufficient to Infer a User Interest[C]//Proc.of the IASTED European Conference on Internet and Multimedia Systems and Applications.Chamonix,France:ACTA Press,2007:41-46.
  • 4Claypool M,Le P,Wased M,et al.Implicit Interest Indicators[Cl// Proc.of the 6th International Conference on Intelligent User Interfaces.Santa Fe,New Mexico,USA:ACM Press,2001:33-40.
  • 5Choi J,Lee G,Um Y.Analysis of Internet User Interests Based on Windows GUI Messages[M].[S.l.]:Springer,2007.
  • 6Kim H,Chan P K.Implicit Indicator for Interesting Web Pages[C]//Proc.of International Conference on Web Information Systems and Technologies.Miami,USA:[s.n.],2005:270-277.
  • 7J(o)rding T Michel S.Personalized Shopping in the Web by Monitoring the Customer[C]//Proc.of British HCI Group Day Conference on Active Web.Stafford,UK:[s.n.],1999.
  • 8何兴无,朱征宇,邓欣,曾凡超.浏览时间在获取用户兴趣向量中的应用[J].情报科学,2008(1):97-100. 被引量:2
  • 9付关友,朱征宇.个性化服务中基于行为分析的用户兴趣建模[J].计算机工程与科学,2005,27(12):76-78. 被引量:27
  • 10修妍,马军海.基于径向基神经网络的局域预测法及其应用[J].计算机工程,2008,34(9):19-21. 被引量:11

二级参考文献61

  • 1徐斌,刘赛,康立山,郑刚.基于遗传算法的信息检索技术[J].计算机工程,2004,30(9):74-75. 被引量:14
  • 2M Claypool, P Le, M Waseda, et al. Implicit Interest Indicators[A]. Proc of the ACM Intelligent User Interfaces Conf(IUI)[C]. 2001.33-40.
  • 3B Mobasher, H Dai, T Luo, et al. Combiing Web Usage and Content Mining for More Effective Personalization[A]. Proc of the Int'l Conf on E_ Commerce and Web Technologies(ECWeb2000)[C]. 2000.
  • 4T P Liang, H J Lai. Discovering User Interests from Web Browsing Behavior: An Application to Internet News Services[A]. Proc of the 35th Hawaii Int'l Conf on System Sciences[C]. 2002.
  • 5Wu Y H, Chen Y C, Chen L P. Enabling Personalized Recommendation on the Web Based User Interests and Behaviors[A]. Proc of the 11th Intq Workshop on Research Issues in ata Engineering (RIDE'01)[C]. 2001.
  • 6赵静 但琦.数学建模与数学试验[M].北京:高等教育出版社,2000..
  • 7Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 8Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 9Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 10Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.

共引文献430

同被引文献28

  • 1武飞周,薛源.智能算法综述[J].工程地质计算机应用,2005(2):9-15. 被引量:19
  • 2Joachims T.Optimizing search engines using click throughdata[C]//Proceedings of the 8th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining,2002:133-142.
  • 3Catledge L,Pitkow J.Characterizing browsing strategiesin the world wide web[J].Computer Networks and ISDNSystems,1995,27(6):1065-1073.
  • 4Silverstein C,Marais H,Henzinger M,et al.Analysis of avery large web search engine query log[C]//ACM SIGIRForum,1999,33(1):6-12.
  • 5Carletta J.Assessing agreement on classification tasks:thekappa statistic[J].Computational linguistics,1996,22(2):249-254.
  • 6LIU X,PEI X H,LI N S,ZHANG Y N, et al. Improved glo- merular filtration rate estimation by an artificial neural net- work[J]. PlosOne, 2013, 8(3): e58242 (1-9).
  • 7MAY C,LI Zi,CHEN J H, et al. Modified glomerular filtra- tion rate estimating equation for Chinese patients with chron- ic kidney disease[J]. Journal of the American Society of Nephrology, 2006, 17(10): 2937-2944.
  • 8刘迅.基于人工智能技术的慢性肾脏病分级预警模型研究[D].广州:华南理工大学,2012.
  • 9陆晨,杨淑芬,岳华.慢性肾脏病的流行病学调查现状[J].医学综述,2008,14(3):370-372. 被引量:33
  • 10张顶学,刘新芝,关治洪.RBF神经网络算法及其应用[J].石油化工高等学校学报,2007,20(3):86-88. 被引量:27

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部