期刊文献+

基于改进蚁群算法的多服务机器人路径规划 被引量:1

Multi-service-robot path planning based on improved colony optimization algorithm
在线阅读 下载PDF
导出
摘要 为解决多服务机器人全局路径规划的问题,将基本蚁群算法应用到多服务机器人全局路径规划上,并对基本的蚁群算法作了改进。对基于算法的多服务机器人系统的构成进行了描述,接着对多服务机器人系统环境的表示方法及算法中对应问题的描述和定义进行了研究。对应用到多服务机器人系统的基本蚁群算法提出了几种改进的策略,并对改进的蚁群算法应用到多服务机器人系统进行路径规划的具体实现过程进行了研究,通过仿真和试验,具体的分析了该方法在多服务机器人系统实验平台的应用。研究结果表明,该方法能解决多服务机器人的路径规划问题,并具有良好的效果。 For solving the problem of the multi-service-robot global path planning,the basic colony optimization algorithm was used,the improvement was made to the basic colony optimization algorithm.The composition of the multi-service-robot's system was described,the expression of the multi-service-robot systematic environment and the description and definition of the algorithm were studied.The several strategies were given to the basic colony optimization algorithm,and the process was studied that using the improved colony optimization algorithm to make the path planning.Through the simulation and experiment applied in the multi-service-robot's system,the result shows that this method can solve the path planning's problem well.
出处 《机电工程》 CAS 2011年第4期448-452,共5页 Journal of Mechanical & Electrical Engineering
基金 国家高技术研究发展计划("863"计划)资助项目(2007AA041604) 上海市科委资助项目(07DZ05805) 上海大学研究生创新基金资助项目(A.16-0109-10-016)
关键词 蚁群算法 多服务机器人 路径规划 colony algorithm multi-service-robot path planning
  • 相关文献

参考文献5

  • 1朱庆保.复杂环境下的机器人路径规划蚂蚁算法[J].自动化学报,2006,32(4):586-593. 被引量:46
  • 2COLORNI A, DORIGO M, MANIEZZO V. Distributed Optimization by Ant Colonies [ C ]//Proceedings of the 1 st Eu- ropean Conference on Artificial Life, 1991:134-142.
  • 3LIU Shi-rong, MAO Lin-bo. Path Planning Based on Ant Colony Algorithm and Distributed Local Navigation for Multi- Robot-Systems[ C ]//2006 IEEE International Conference on Mechatronics and Automation,2006 : 1733-1738.
  • 4WANG Hong-hao, LIU Qing. Convergence Analysis of a Max-Min Ant Colony Algorithm[ C]//Proceedings of the In- ternational Conference on Sensing, ComPuting and Automa- tion, Waterloo : Watam Press,2006:3901-3904.
  • 5段海滨.蚁群算法原理及应用[M].北京:科学出版社,2005.12.

二级参考文献7

  • 1Yi X,He Y,Guan X.Cooperative location model under the nearest neighbor criterion position location and navigation.In:Proceedings of Symposium,PLANS 2004,IEEE,2004.658~661
  • 2Zhang C Gg,Xi Y G.Mobile robot path planning based on rolling windows in the unknown environment.Science in China (Series E),2001,31(1):51~58
  • 3Bruce J,Veloso M.Real-time randomized path planning for robot navigation.In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System,2002.3:2383~2388
  • 4Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies.In:Proceeding of European Conference of Artificial Life ECAL91,F.Varela and P.Bourgine (Eds),Paris,France:Elsevier Publishing,1991.134~144
  • 5Dorigo M,Di Caro G.Ant colony optimization:a new meta-heuristic.In:Proceedings of the 1999 Congress on Evolutionary Computation,Washington,DC,USA:IEEE Press,1999.2:1474~1477
  • 6Fan X Y,Luo X,Yi S,Yang S,Zhang H.Optimal path planning for mobile robots based on intensified ant colony optimization algorithm.In:Proceedings of 2003 IEEE on International Conference on Robotics,Intelligent Systems and Signal Processing,2003.1:131~136
  • 7Ding Y Y,He Y,Jiang J P.Multi-robot cooperation method based on the ant algorithm.In:Proceedings of the 2003 IEEE Swarm Intelligence Symposium SIS'03,2003.24-26 2003.14~18

共引文献107

同被引文献21

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部