期刊文献+

天体力学中的数值积分方法

Numerical Integration Methods in Celestial Mechanics
在线阅读 下载PDF
导出
摘要 本文综述了天体力学中所应用的数值积分方法及其结果的精度检验方法,并介绍了数种常用数值积分法的计算软件包。 This paper reviews various numerical integration methods applied in celestial mechanics. The methods of accuracy check in numerically integrated results have been introduced as well. Finally,some popular computer softwares of numerical integrator have been listed.
作者 张捷 何妙福
出处 《天文学进展》 CSCD 北大核心 1990年第2期150-158,共9页 Progress In Astronomy
  • 相关文献

参考文献12

  • 1Tian-Yi Huang,Mauri J. Valtonen. Two multiderivate multistep (MDMS) integrators[J] 1987,Celestial Mechanics(1-4):223~238
  • 2Hiroshi Kinoshita,Hiroshi Nakai. Motions of the perihelions of Neptune and Pluto[J] 1984,Celestial Mechanics(1-4):203~217
  • 3K. A. Papp,K. A. Innanen,A. T. Patrick. A comparison of five algorithms for numerical orbit computation in galaxy models[J] 1980,Celestial Mechanics(4):337~349
  • 4A. Gordon Emslie,Ian W. Walker. Studies in the application of recurrence relations to special perturbation methods[J] 1979,Celestial Mechanics(2):147~162
  • 5J. R. Dormand,P. J. Prince. New Runge-Kutta algorithms for numerical simulation in dynamical astronomy[J] 1978,Celestial Mechanics(3):223~232
  • 6T. Feagin,P. R. Beaudet. Multistep methods of numerical integration using back-corrections[J] 1976,Celestial Mechanics(1):111~120
  • 7Edgar Everhart. Implicit single-sequence methods for integrating orbits[J] 1974,Celestial Mechanics(1):35~55
  • 8W. Black. Practical considerations in the numerical solution of theN-body problem by Taylor series methods[J] 1973,Celestial Mechanics(3):357~370
  • 9P. E. Moran,A. E. Roy,W. Black. Studies in the application of recurrence relations to special perturbation methods[J] 1973,Celestial Mechanics(3):405~428
  • 10R. Broucke. Solution of theN-body problem with recurrent power series[J] 1971,Celestial Mechanics(1):110~115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部