期刊文献+

基于模糊Bayes-Gauss判别法的遥感影像的聚类

Remote Sensing Image Clustering Based on Fuzzy Bayes-Gauss Criterion
在线阅读 下载PDF
导出
摘要 针对Fisher线性判别法和传统的Bayes判别方法在遥感影像聚类问题研究中存在的不足,提出一种以隶属度代替先验概率的模糊Bayes-Gauss聚类算法,并将此算法应用于真彩色(RGB)图像中的草地、道路、裸土地和建筑物的聚类.实验结果表明,本算法在聚类中与Fisher线性判别法和传统Bayes判别法相比,具有精确度较高、误识率和拒识率较低、适用性较强的特点. In face of the shortcomings of the Fisher linear discriminant method and the traditional Bayesian algorithm in remote sensing image clustering,a new kind of fuzzy Bayes-Gauss clustering method was proposed by using fuzzy membership functions instead of priori probability.And the new algorithm was applied to the clustering of grasses,bare land,roads and buildings in True Color(RGB).The results of experiments showed that the new algorithm for clustering had higher precision,lower false accept rate and false reject rate,and stronger applicability advantages,compared with the weighted Fisher linear discriminant and traditional Bayes algorithm.
出处 《集美大学学报(自然科学版)》 CAS 2011年第2期154-158,共5页 Journal of Jimei University:Natural Science
基金 福建省自然科学基金资助项目(A0810014) 福建省教育厅重点项目(JK2009017) 福建省科技厅青年人才创新基金项目(2009J05009) 厦门市科技计划项目(3502Z20093018)
关键词 遥感影像 加权Fisher判别法 Bayes判别法 模糊Bayes-Gauss判别法 remote sensing image weighted Fisher linear discriminant(FLD) Bayes algorithm fuzzy Bayes-Gauss criterion
  • 相关文献

参考文献7

二级参考文献27

  • 1谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报(自然科学版),2004,40(5):639-648. 被引量:14
  • 2王小鹏,罗进文.基于形态学梯度重建的分水岭分割[J].光电子.激光,2005,16(1):98-101. 被引量:36
  • 3黎琳,赵英.基于内容的图像检索反馈技术概述[J].图书情报工作,2006,50(11):95-98. 被引量:3
  • 4董立岩,苑森淼,刘光远,贾书洪.基于贝叶斯分类器的图像分类[J].吉林大学学报(理学版),2007,45(2):249-253. 被引量:31
  • 5章舜仲,王树梅,黄河燕,陈肇雄.基于属性相关性分析的贝叶斯分类模型[J].情报学报,2007,26(2):271-274. 被引量:11
  • 6[1]Chan P K,Stolfo S J.Toward scalable learning with non-uniform class and cost distributions:a case study in credit card fraud detection[C]//Proc of the Fourth International Conference on Knowledge Discovery and Data Mining(KDD-98).NewYork,1998:164-168.
  • 7[2]Weiss G M,Hirsh H.Learning to predict rare events in event sequences[C]//Proc of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98).New York,1998:359-363.
  • 8[3]Atiya A F.Bankruptcy prediction for credit risk using neural network:a survey and new results[J].IEEE Trans on Neural Networks,2001,12(4):929-935.
  • 9[4]Kubat M,Holte R C,Matwin S.Machine learning for the detection of oil spills in satellite radar images[J].Machine Learning,1998,30(2):195-215.
  • 10[5]Maloof M A.Learning when data sets are inthalanced and when costs are unequal and unknown[C]//ICML-2003 Workshop on Learning From Imbalanced Data Sets II,2003.

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部