Sharp Bounds for Symmetric and Asymmetric Diophantine Approximation
Sharp Bounds for Symmetric and Asymmetric Diophantine Approximation
摘要
In 2004,Tong found bounds for the approximation quality of a regular continued fraction convergent to a rational number,expressed in bounds for both the previous and next approximation.The authors sharpen his results with a geometric method and give both sharp upper and lower bounds.The asymptotic frequencies that these bounds occur are also calculated.
二级参考文献4
-
1[1]Tong, J., Symmetric and asymmetric Diophantine approximation of continued fractions, Bull. Soc.Math. France, 117(1989), 59-67.
-
2[2]Tong, J., Diophantine approximation by continued fractions, J. Austrl. Math. Soc. (Series A),51(1991), 324-330.
-
3[3]Tong, J., Diophantine approximation of a single irrational number, J. Number Theory, 35(1990), 53-57.
-
4[4]Tong, J., The conjugate property for Diophantine approximation of continued fractions, Proc. Amer.Math. Soc., 105(1989), 535-539.
-
1Ji SHU,Jian ZHANG.Sharp Criterion of Global Existence for Nonlinear Schrodinger Equation with a Harmonic Potential[J].Acta Mathematica Sinica,English Series,2009,25(4):537-544. 被引量:1
-
2刘瑞芳,翟明清,束金龙.Sharp Lower Bound of the Least Eigenvalue of Graphs with Given Diameter[J].Journal of Donghua University(English Edition),2009,26(4):435-437.
-
3科技.与“上帝粒子”高度吻合的新粒子被发现[J].军民两用技术与产品,2012(8):26-26.
-
4LI Wei-ping,WANG Tian-ze.Diophantine Approximation with Two Primes and One Square of Prime[J].Chinese Quarterly Journal of Mathematics,2012,27(3):417-423. 被引量:2
-
5李伟平,王天泽.Diophantine Approximation with Four Squares of Primes and Powers of Two[J].Chinese Quarterly Journal of Mathematics,2007,22(2):166-174. 被引量:1
-
6Jian WANG.Sharp Bounds for the First Eigenvalue of Symmetric Markov Processes and Their Applications[J].Acta Mathematica Sinica,English Series,2012,28(10):1995-2010. 被引量:3
-
7徐仁新.追寻惰性中微子[J].物理,2016,45(10):672-672.
-
8沈葹.跃跃乎,“上帝粒子”?[J].世界科学,2012(8):16-17.
-
9Adam NOWAK,Luz RONCAL.Sharp Heat Kernel Estimates in the Fourier–Bessel Setting for a Continuous Range of the Type Parameter[J].Acta Mathematica Sinica,English Series,2014,30(3):437-444.
-
10QIU Song-Liang REN Liang-Yu.Sharp estimates for Hübner’s upper bound function with applications[J].Applied Mathematics(A Journal of Chinese Universities),2010,25(2):227-235. 被引量:3