期刊文献+

Numerical investigation of slow solitons in Bragg gratings with a hyperbolic tangent apodization

Numerical investigation of slow solitons in Bragg gratings with a hyperbolic tangent apodization
原文传递
导出
摘要 This paper numerically and analytically investigates the formation and propagation motion of optical soliton in the Bragg grating. We choose the fibre Bragg grating with hyperbolic tangent apodization in the middle section in order to obtain slower solitons. Optical fibre soliton but not Bragg grating soliton is used as input pulse in the discussion, which is much more approximate to the light source for the practical purpose. We discuss in detail the effects of the soliton's velocity with some parameters in the process of transmission. The results show that by choosing special parameters, one can make the soliton slow-down with a little distortion and energy decay and obtain tunable time-delay on a small scale. This paper numerically and analytically investigates the formation and propagation motion of optical soliton in the Bragg grating. We choose the fibre Bragg grating with hyperbolic tangent apodization in the middle section in order to obtain slower solitons. Optical fibre soliton but not Bragg grating soliton is used as input pulse in the discussion, which is much more approximate to the light source for the practical purpose. We discuss in detail the effects of the soliton's velocity with some parameters in the process of transmission. The results show that by choosing special parameters, one can make the soliton slow-down with a little distortion and energy decay and obtain tunable time-delay on a small scale.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期268-273,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 60677003)
关键词 fibre grating slow light SOLITON hyperbolic tangent apodization fibre grating, slow light, soliton, hyperbolic tangent apodization
  • 相关文献

参考文献15

  • 1Luo B, Hang C, Li H J and Huang G X 2010 Chin. Phys. B 19 054214.
  • 2del Barco O and Ortuno M 2010 Phys. Rev. A 81 023833.
  • 3Jiang Y, Jiang W, Gu L, Chen X and Chen R T 2005 Appl. Phys. Lett. 87 221105.
  • 4Jacobsen R S, Andersen K N, Borel P I, Fage-Pedersen J,Frandsen L H, Hansen O, Kristensen M, Lavrinenko A V, Moulin G, Ou H, Peucheret C, Zsigri B and Bjarklev A 2006 Nature 441 199.
  • 5Qiu w, Zhang Y D, Ye J B, Tian H, Wang N, Wang J F and Yuan P 2007 Acta Phys. Sin. 56 7009 (in Chinese).
  • 6Winful H G 1985 Appl. Phys. Lett. 46 527.
  • 7Eggleton B J, Slusher R E, de Sterke C M, Krug Peter A and Sipe J E 1996 Phys. Rev. Lett. 76 1627.
  • 8Mak William C K, Malomed Boris A and Chu Pak L 2003 Phys. Rev. E 68 026609.
  • 9Mak William C K, Malomed Boris A and Chu Pak L 2004 J. Mod. Opt. 51 2141.
  • 10Mok J T, de Sterke C M, Littler I C M and Eggleton B J 2006 Nat. Phys. 2 775.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部