期刊文献+

数据挖掘技术在路口交通信号控制中的应用

Application of Data Mining Technology in Intersection Traffic Signal Control
在线阅读 下载PDF
导出
摘要 为了克服传统的交通路口信号控制算法不能适应环境变化的缺陷,本文引入了基于遗传学习分类的数据挖掘方法,通过对历史交通数据和控制参数进行规则编码、以及适应度函数的构造,从大量历史交通数据中挖掘出适应交通环境变化的信号控制规则。最后,构造了单路口交通控制仿真平台,实验表明能有效提高路口控制效率并适应环境变化。 n order to overcome the defect that traditional intersection traffic signal control algorithm cannot adapt to the changing environment. This paper introduces the genetic learning and classifier method for the traffic signal control, by means of coding the traffic data and constructing the fitness function, to excavate the traffic signal control rules which can adapt to the changing environment Finally, the traffic signal control simulation platform is built to verify it. The experiment shows it can effectively improve the control efficiency ofintersection and quickly adapt to environment changes.
作者 沈良忠
出处 《微计算机信息》 2011年第2期233-234,237,共3页 Control & Automation
关键词 数据挖掘 分类 遗传学习 交通信号 Data mining classifiers Genetic learning Traffic signal.
  • 相关文献

参考文献9

  • 1Holland J H. Adaptation in Natural and Artificial Systems [M]. Ann Arbor, the University of Michigan Press, 1975.
  • 2Holland J H. A Mathematical framework for studying learning in Classifier Systems [M]. North - Holland, 1986:307-317.
  • 3Wilson S. Classifier Fitness Based on Accuracy [J]. Computation, 1995, 3 (2) : 149-175.
  • 4Helen A. Fuzzy L earning Classifier System s for Classification Task [J]. Transport and Telecommunication,2002,3 (3) : 43-51.
  • 5王珏,石纯一.机器学习研究[J].广西师范大学学报(自然科学版),2003,21(2):1-15. 被引量:78
  • 6冯彦杰,王浣尘.学习分类器在绩效寻优中的应用及其组织决策意义[J].控制理论与应用,2003,20(3):470-472. 被引量:3
  • 7Sette S, BouUart L. An Implementation of Genetic Algorithms for Rule Based Machine Learning [J]. Engineer Application of Artifi- cial Intelligence, 2000, 13(4) : 381-390.
  • 8[3]王小平,曹立明.遗传算法-理论、应用于软件实现[M].西安交通大学出版社,2000:4~16
  • 9张婧,杨炳儒.基于混合遗传算法的聚类模式数据挖掘方法[J].微计算机信息,2006,22(06X):219-221. 被引量:5

二级参考文献62

  • 1龙银香.基于移动计算的数据挖掘研究[J].微计算机信息,2005,21(4):216-217. 被引量:12
  • 2WienerN.控制论(中译本)[M].北京:科学出版社,1962..
  • 3Yao Y,Lin T. Generalization of rough sets using model logics[J]. Intelligent Automation and Soft Computing, 1996,2(2):103-120.
  • 4Skowron A,Rauszer C. The discernibility matrices and functions in information systems [A]. Slowinski R. Ifitelligent decision support-handbook of applications and advances of the rough sets theory[C]. Dordrecht :Kluwer Academic Publishers, 1992. 331-362.
  • 5Han J,Kamber M. Data mining:Concepts and techniques [M]. San Mateo :Morgan Kaufmann Publishers, 2000.
  • 6Zhou Yu-jian,Wang Jue. Rule + exception modeling based on rough set theory[A]. Polkowski L,Skowron A. Rough sets and current trends in computing[C]. Berlin :Springer, 1998. 529-536.
  • 7Kaelbling L,Littman M ,Moore A. Reinforcement learning :A survey[J]. Journal of Artificail Intelligence Research,1996,4:237-285.
  • 8Arbib M. Brains machines and mathematics[M]. New York :McGraw Hill companies, 1964.
  • 9Ashby W. Design for a brain the origin of adaptive behavior[M]. London :Chapman & Hall, 1950.
  • 10Holland J. Adaptation in natural and artificial systems[M]. Ann Arbor:University of Michigan Press ,1975.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部