期刊文献+

基于分组模糊神经网络的函数逼近研究 被引量:2

Research on function approximation based on packeted fuzzy neural networks
在线阅读 下载PDF
导出
摘要 提出了一种用于模糊神经网络函数逼近的新方法,将分组的思想与模糊神经网络相结合应用于函数的逼近。实验结果表明,这种方法具有更好的逼近能力和泛化能力,同时在精度给定的情况下训练时间也有所减少。 A new method for function approximation based on packeted fuzzy neural networks was proposed ,which idea of packet and fuzzy neural networks are combined for function approximation. Experimental results show that this method has better approximation capability and generalization ability,while the training time was reduced in the case of precision was given.
出处 《微计算机信息》 2011年第2期173-175,共3页 Control & Automation
关键词 模糊系统 神经网络 模糊逼近 函数逼近 fuzzy system neural networks fuzzy approximation function approximation
  • 相关文献

参考文献10

  • 1伍世虔,徐军.动态模糊神经网络[M].北京:清华大学出版社,2007.
  • 2吴成勇,王士同.基于Sugeno补的自适应性避障模糊系统的研究[J].微电子学与计算机,2009,26(10):208-212. 被引量:1
  • 3李朝鹏,李肯立,成运,陈臣.一种新的神经网络逼近函数算法[J].微计算机信息,2010,26(12):233-234. 被引量:3
  • 4Hornik K, Stinchcombe M, White H. Muhilayer feedforward networks are universal approximators [J].Neural Networks. 1989, 2 (5) :359-366.
  • 5Kosko.Fuzzy systems as universal approximators [J].IEEE Transactions on computers,1994,43(11):1329-1330.
  • 6Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks[J], 1989,2(3): 183 - 192.
  • 7Thawonmas R, Abe S.Function approximation based on fuzzy rules extracted from partitioned numerical data [J].IEEETrans Syst Man Cybern B Cybernet,1999,29(4):525 - 534.
  • 8Hornik K, Stinchombe M, White H.Muhilayer feedforward networks are universal approximators [J]. Neural Networks,1989, 2(5): 359 - 366.
  • 9Cho KB, Wang BH.Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction[J].Fuzzy Sets Syst,1996,83:325 - 339.
  • 10Nauck D, Kmse R.Neuro-fuzzy systems for function approximation[J].Fuzzy Sets Syst,1999,101:261 -271.

二级参考文献18

  • 1杨国为,王守觉,闫庆旭.分式线性神经网络及其非线性逼近能力研究[J].计算机学报,2007,30(2):189-199. 被引量:20
  • 2Zadeh L A. Fuzzy sets[J ]. Information and Control, 1965,8 (2) :338 - 353.
  • 3Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Tram systems Man and Cybernetics, 1985,SMC- 15(1):116- 132.
  • 4Abonyi J ,Nagy L. Adaptive fuzzy inference system and its application in modelling and model based control[J], IEEE Transactions on computers, 1999,77(4) :281 - 290.
  • 5Kosko B. Fuzzy systems as universal approximators [ J ]. IEEE Transactions on computers, 1994,43 ( 11 ) : 1329 - 1330.
  • 6Jerry S, Branson, John H Lilly. Incorporation, characterization,and conversion of negative rules into fuzzy inference systems[J ]. IEEE Transactions on fuzzy systems, 2001,9 (2) .253 - 267.
  • 7John H Lilly. Evolution of a negative - rule fuzzy obstacle avidance controller for an autonomous vehicle [ J ]. IEEE Transactions on fuzzy systems,2007,15(4) :718- 727.
  • 8Wang L X. Fuzzy systems as universal approximators[ C]// IEEE international conference on fuzzy. San Diego, 1992:1163 - 1170.
  • 9Lowen R. On fuzzy complements [J ]. Information Sciences, 1978,14(2) : 107 - 113.
  • 10Yager R R. On the measures of fuzziness and negation [J]. Information and Control, 1980,44(3):236- 260.

共引文献4

同被引文献29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部