期刊文献+

改进的混合蛙跳算法在传感器配置优化中的应用 被引量:2

Application of Improved Shuffled Frog Leaping Algorithm in Optimum of Sensor Location
在线阅读 下载PDF
导出
摘要 传感器配置优化是可测性设计的重要研究内容,将混合蛙跳算法应用于传感器配置优化是一种新的尝试。针对传感器配置优化属于离散问题求解,提出离散的混合蛙跳算法,设计了一种离散化的更新方式。为克服蛙跳算法的早熟收敛问题,在改进的离散蛙跳算法中采用混沌优化算法以概率的形式对全局极值进行了优化。最后通过具体系统实例验证了该方法的正确性和有效性。 Optimum of sensor location is an important research field in testability design,and it is a new attempt to use shuffled frog leaping algorithm for optimum of sensor location.Considering the optimal problem of sensor location is set in a space featuring discrete,a discrete shuffled frog leaping algorithm was proposed,and the change in position was re-defined discretely.To avoid converging too fast,the algorithm was improved.Chaos optimization algorithm was used to optimize the best solution in the form of probability.An example and simulation results were provided to verify the ef-fectiveness and practicability of this approach.
出处 《计算机科学》 CSCD 北大核心 2011年第2期72-75,81,共5页 Computer Science
基金 军队保障科研项目"新型地空导弹装备测试性分析与验证技术研究"资助
关键词 传感器配置优化 混合蛙跳算法 混沌优化算法 Optimum of sensor location Shuffled frog leaping algorithm Chaos optimization algorithm
  • 相关文献

参考文献7

  • 1安幼林.面向综合诊断的装备诊断设计关键技术研究[D].石家庄:军械工程学院,2009.
  • 2Jiang Shengbing,Kumar R.Optimal Sensor Selection for Discrete-event Systems with Partial Observation[J].IEEE Transactions on Automatic Control,2003,48(3):369-381.
  • 3姚钦,史仪凯,夏锐.多目标交互式遗传算法在测试点确定问题中的应用[J].系统仿真学报,2006,18(6):1469-1472. 被引量:4
  • 4Zhang Guangfan.Optimum Sensor Localization/Selection in A Diagnostic/Prognostic Architecture[D].Georgia:Georgia Institute of Technology,January 2005:39-40.
  • 5Elbeltagi E,Hegazy T,Grierson D.Comparison among five evolutionary-based optimization algorithms[J].Advanced Engineering Informatics,2005,19(1):43-53.
  • 6Eusuff M M,Lansey K E.Optimization of water distribution network design using shuffled frog leaping algorithm[J].Journal of Water Resources Planning and Management,2003,129(3):210-225.
  • 7李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:538

二级参考文献8

  • 1Chen L,中日青年国际学术讨论会论文集,1995年
  • 2卢侃,混沌动力学,1990年
  • 3丁定浩.可靠性与维修性工程[M].北京:电子工业出版社,1986.130-153.
  • 4Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs [M]. Springer-Verlag, Second Extended Edition, 1994.
  • 5Zitzler E, Thiele L. Multi-Objective Evolutionary Algodthms:A Comparative Case Study And the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation (81089-778X). 1993,3(4): 257-271.
  • 6Morikawa K, Furuhashi T. Cooperation and Evolution of Scheduling System with Genetic Algorithms.Research Report, Department of Information Electronics [M]. Nagoya University, 1996.
  • 7苟先太,金炜东.有约束优化中遗传算法的应用[J].西南交通大学学报,1997,32(4):433-437. 被引量:10
  • 8雷德明.自调整遗传算法[J].系统工程与电子技术,1999,21(11):70-71. 被引量:7

共引文献545

同被引文献25

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部