期刊文献+

几种计算超体积算法的比较研究 被引量:2

Comparative Research on Algorithms for Computing Hypervolume
在线阅读 下载PDF
导出
摘要 对LebMeasure算法、HSO算法、HSO+MWW算法以及HKMP算法的基本思路、关键问题进行评述,在几种测试数据集上对算法的性能进行比较验证。实验结果表明,对于所有类型的前沿,HSO+MWW的性能好于HSO算法;当处理点的数目超过某一值时,HKMP算法的性能好于HSO算法,与理论分析一致;对于HKMP算法和HSO+MWW算法,在random和discontinuous前沿上,当处理点的数目超过某一值时,HKMP算法的性能好于HSO+MWW算法;但在spherical和degenerate前沿上,HSO+MWW算法的实际性能远好于HKMP算法。 The main idea and the key point of LebMeasure algorithm, HSO algorithm, HSO+MWW algorithm and HKMP algorithm are introduced. The performance of the algorithms is compared on the different data set. Experimental results show that the performance of HSO+MVCW is better than that of HSO for all of the fronts. For HKMP and HSO, it consists with the theory that the performance of the former is better than that of the latter when the number of the processed point exceeds some value. For the random front and the discontinuous front, the performance of HSO+MWW is worse than that of HKMP when the number of the processed point exceeds some value. But for the spherical front and the degenerate front, the performance of HSO+MWW is better than that of HKMP.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第3期152-154,157,共4页 Computer Engineering
基金 国家自然科学基金资助项目(10605021 60675011)
关键词 进化计算 多目标进化算法 超体积 evolutionary computation mulitiobjective evolutionary algorithm hypervolume
  • 相关文献

参考文献7

  • 1Zitzler E.Evolutionary Algorithms for Multiobjective Optimization:Methods and Applications[D].Zurich,Switzerland:Swiss Federal Institute of Technology,1999.
  • 2Fleiscber M.The Measure of Pareto Optima:Applications to Multi-objective Metaheuristics[M]//Evolutionary Multiobjective Optimization.Berlin,Germany:Springer-Verlag,2003:519-533.
  • 3While L,Hingston P,Barone L,et al.A Faster Algorithm for Calculating Hypervolume[J].IEEE Transactions on Evolutionary Computation,2006,10(1):29-38.
  • 4Beume N,Rudolph G.Faster S-metric Calculation by Considering Dominated Hypervolume as Klee's Measureproblem[C]//Proc.of the 2nd IASTED Conference on Computational Intelligence.Anaheim,USA:ACTA Press,2006.
  • 5Bader J,Deb K,Zitzler E.Faster Hypervolume-based Search Using Monte Carlo Sampling[C]//Proc.of MCDM'08.Heidelberg,Germany:[s.n.],2010.
  • 6While L,Bradstreet L,Barone L,et al.Heuristics for Optimizing the Calculation of Hypervolume for Multiobjective Optimization Problem[C]//Proc.of IEEE Congress on Evolutionary Computation.Edinburgh,UK:[s.n.],2005.
  • 7程鹏,张自力.多目标进化算法测试问题的设计与分析[J].计算机工程,2009,35(14):238-240. 被引量:1

二级参考文献5

  • 1Van Veldhuizen D A.Mutio-bjective Evolutionary Algorithms:Classification,Analysis,and New Innovation[D].Wright-Patterson AFB,Ohio:Graduate School of Engineering of the Air Force Institute of Technology,Air University,1999.
  • 2Huband S,Barone L,While L,et al.A Scalable Multi-objective Test Problem Toolkit[C]//Proceedings of the Evolutionary Multi-criterion Optimization'05.Berlin,Germany:Springer,2005:280-295.
  • 3Deb K.Multi-objective Genetic Algorithms:Problem Difficulties and Construction of Test Problems[J].Evolutionary Computation,1999,7(3):205-230.
  • 4Deb K,Thiele L,Laumanns P,et al.Scalable Test Problems for Evolutionary Multiobjective Optimization[M]//Abraham A,Jain L,Goldberg R.Evolutionary Multi-objective Optimization:Theoretical Advances and Applications.[S.1.]:Springer,2005.
  • 5Deb K,Pratap A,Agrawal S,et al.A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-Ⅱ[J].IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.

同被引文献14

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部