摘要
通过构造李亚普诺夫函数,利用线性矩阵不等式,对一类具有Neumann边界的分布参数切换系统给出了状态反馈镇定的充分条件.该条件用一组线性矩阵不等式表示,从而将分布参数切换系统状态反馈镇定问题转化为一组线性矩阵不等式的可行解问题,且状态反馈控制器可借助Matlab中线性矩阵不等式工具箱求解.最后通过数值算例,验证所提出设计方法的有效性.
By constructing Lyapunov functions and employing linear matrix inequality(LMI),a number of sufficient conditions for a class of distributed parameter switch systems(DPSSs) with Neumann boundary conditions of stabilization are derived.These conditions are described by a group of linear matrix inequalities,so the state feedback stabilization of DPSS is transformed into the feasible solution problem of a group of LMIs.In addition,the state feedback controllers can be efficiently solved by Matlab LMI toolbox.Finally,a numerical example shows the validity of the proposed design method.
出处
《信息与控制》
CSCD
北大核心
2011年第1期137-140,共4页
Information and Control
基金
国家自然科学基金资助项目(60974022)
关键词
分布参数系统
切换系统
反馈镇定
线性矩阵不等式
distributed parameter system
switched system
feedback stabilization
linear matrix inequality