摘要
通过寻找二维亥姆霍兹方程解析试验解的方式来求解六角形几何多群中子扩散方程,并利用对称性原理和群论确定节块内的中子通量分布。和普通先进节块法不同的是求解过程不采用横向积分技术,节块之间同时采用偏流和偏流矩相耦合,且得到的解在节块内任意点上都满足扩散方程。对基准题的校核计算表明,组件最大功率误差均小于1%。
Based on
analytical representation of nodal flux distribution and symmetric groups theory of regular 2 D
hexagon, a new efficient nodal method is developed for the solution of multigroup neutron
diffusion equation in hexagonal geometry without resorting to the traverse integration
technique. Differing from the commonly used surface average partial current nodal coupling
method, nodes are coupled with partial current first moment as well as surface average partial
current.An experimental code GTDIF H has been developed based on the proposed model. The
dramatic efficiency and accuracy of proposed method is well demonstrated by the numerical
results of benchmark problems.
出处
《核科学与工程》
CAS
CSCD
北大核心
1999年第2期121-131,共11页
Nuclear Science and Engineering
基金
国家自然科学基金
核工业科学基金
教委博士点基金
关键词
中子扩散方程
对称群
数值解
节块法
二维
symmetric groups diffusion equation numerical
solutions analytic