期刊文献+

运筹学中若干线性目标规划和线性规划的人工智能-代数解法 被引量:2

An Artificial Intelligence-Algebraic Algorithm for the Linear Goal Dimensional Resources Allocation Problems in Programming and the Linear Programming
在线阅读 下载PDF
导出
摘要 运筹学中的线性目标规划和线性规划问题一直分别采用修正单纯形法和单纯形法求解.当变量稍多时计算还是有些繁琐、费时,最近作者通过研究发现,可应用人工智能-代数方法求得这两类问题的解,而且具有相当广泛的适用性.若干例题说明,本法的结果和传统方法的结果由于传统算法在计算中发生的错误,除少数例外大都是一致的.本文的一个重要目的是希望和广大读者一起研究该方法是否具有通用性. So far the modified simplex method and simplex method have been used for the solution of the linear goal programming and linear programming respectively.Of course,these methods are effective and successful,but they are some what trouble and time-consuming when the scale of problem is larger.Recently author discovered that and artificial intelligence-algebraic algorithm can be used for solving this two kinds of problem. The main idea of this algorithm is that based on the practical background of the problem man's wisdom is used to analyse which of the inequality constraints should be equalties to make the optimized goal function or the objective function optimum.Asuming that there are m' of equalities in m inequality constraints,in which only n decision variables are included and so there are n-m' of decision variables should be zeros to make the optimized goal function or the objective function optimum.The optimality condition is used to determine which of decision variables equal to zeros.At last,the optimum solution or the satistactory solution can be solved from the m' equality equations including m' decision variables.Many examples we collected show that this algorithm is very simple,rapid and effective and the results obtained by this algorithm and by the traditional simplex method are almost all consistent,exception of a few examples due to mistakes happened in the calculation of simplex methods.And so this algorithm posseses considerably wide applicability.But the universal applicability didn't be proved theretically yet.Therefore an important aim of this paper is to attract readers to investigate with us the problem of whether this algorithm posseses universal applicability.
作者 孙焕纯
出处 《运筹学学报》 CSCD 2010年第4期101-111,120,共12页 Operations Research Transactions
基金 大连理工大学211工程建设项目资助
关键词 运筹学 线性目标规划 线性规划 单纯形法 人工智能-代数解法 Operations research linear goal programming linear programming simplex method artificial intelligence algebraic algorithm
  • 相关文献

参考文献5

  • 1Ignizi J. P. Goal Programming and Extensions [M]. D. C. Heath and Company; Letington, Massachusetts Toronto, 1976.
  • 2Hillir F.S., Lieberson G.J. Introduction to operations research [M]. San Francisco: Holden, 1986.
  • 3Rardin R.L. Optimization in operations research [M]. New York: Printice Hall, 1998.
  • 4钱颂迪,甘应受,田丰等.运筹学(修订版)[M].北京:清华大学出版社,1997.
  • 5孙焕纯,王跃方,柴山.多变量、多约束连续或离散的非线性规划的一个通用算法[J].应用数学和力学,2005,26(10):1168-1174. 被引量:6

二级参考文献3

  • 1Himmelblau D M. Applied Nonlinear Programming[ M]. New York: McGraw-Hill, 1972,221-391.
  • 2Bazara M S, Shetty C M. Nonlinear Programming Theory and Algorithms [ M]. New York: John Wiley & Sons Inc, 1979,253-496.
  • 3孙焕纯 柴山 王跃方.离散变量结构优化设计(增订版)[M].大连:大连理工大学出版社,2002..

共引文献6

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部