期刊文献+

一类Lienard方程的概周期解

The almost periodic solution for a class of Lienard equation
原文传递
导出
摘要 利用Schauder不动点定理讨论概周期解存在性,往往会遇到算子紧性证明的困难.为了将研究周期解存在的方法推广到概周期解情形,在稍强的条件下利用压缩映射原理来证明Lienard方程概周期解的存在性. There is always difficult in the proof of compact operator when we discuss the existence of almost periodic solution by Schauder fixed point theorem.In this paper,the existence of almost periodic solution for Lienard equation is investigated by constriction mapping principle under little strong condition.
作者 谢惠琴
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期797-802,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JB826733)
关键词 LIENARD方程 概周期解 压缩映射原理 Lienard equation almost periodic solution constriction mapping principle
  • 相关文献

参考文献9

  • 1黄建吾.二次周期系数微分方程的周期解[J].纯粹数学与应用数学,2004,20(2):145-149. 被引量:13
  • 2周伟灿,邹兰军.Liénard型方程周期解的存在性[J].南京气象学院学报,2005,28(5):657-661. 被引量:3
  • 3周伟灿,许敏.非共振条件下Liénard型方程周期解的存在性[J].工程数学学报,2006,23(5):931-934. 被引量:2
  • 4Agarwal R P, Philos Ch G, Tsamatos P Ch. Global solution of a singular initial value problem to second order nonlinear delay differential equations [ J ]. Mathematical and Computer Modelling, 2006 (43) : 854 - 869.
  • 5Niksirat M A, Mehri B. On the existence of positive solution for second - order multi - points boundary value problems [J]. Journal of Computational and Applied Mathematics, 2006 ( 193 ) : 269 - 276.
  • 6王克.强迫Lienard方程的概周期解[J].数学年刊(A辑),1995,1(4):417-423. 被引量:11
  • 7Shi J L. The solution structure of second order linear differential equations with almost periodic coefficient [ J ]. Pan American Mathematical Journal, 1999, 9(2) : 51 -67.
  • 8Coppel W A. Dichotomies in stability theory[ M]. Berlin: Springer- Verlag, 1978.
  • 9HALEJK.常微分方程[M].北京:人民教育出版社,1980..

二级参考文献26

  • 1赵瑞星.对称不稳定的非线性问题和对称型重力惯性波的非线性周期解[J].大气科学,1994,18(4):437-441. 被引量:2
  • 2Luo D,Chin Ann Math B,1992年,13卷,3期,341页
  • 3Sun J,J Nanjing Univ Math Biquart,1990年,192页
  • 4Sun J,Ann Diff Eqs,1988年,4卷,4期,463页
  • 5Chang S J,J Math Anal Appl,1975年,49卷,263页
  • 6Mawhin J, Millem M. Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations [J]. J Diff Equs, 1984,52:264-287.
  • 7Ge Weigao. On the existence of harmonic solutions of Liénard systems[J]. Nonlinear Anal,1991,16(2) :183-190.
  • 8Nieto J J. Nonlinear second-order periodic boundary value problems[J]. J Math Anal Appl, 1988,130:22-29.
  • 9Shen Zuhe, Wolfe M A. On the existence of periodic solutions of periodically perturbed conservative systems [J]. J Math Anal Appl,1990,153 (1) :78-83.
  • 10Tan Junyu, Wen Shiliang. Periodic traveling wave solution to a forced two-dimensional generalized KdV-Burgers equation [J]. JMath Research & Exposition ,2001,21 (4) :483-490.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部