期刊文献+

Curvelet域贝叶斯估计侧扫声呐图像降斑方法 被引量:15

Side-scan sonar image despeckling based on Bayesian estimation in curvelet domain
在线阅读 下载PDF
导出
摘要 针对侧扫声呐图像的斑点噪声,提出了一种贝叶斯估计的Curvelet域降斑方法。依据海底散射模型,得到侧扫声呐图像斑点噪声的瑞利分布乘性噪声模型。将取对数后的含斑图像进行Curvelet变换,依据噪声系数的瑞利分布、信号系数的高斯分布,结合贝叶斯理论的最大后验概率估计方法,在近似条件下,得到Curvelet变换域系数估计的理论解析式。采用局部自适应的邻域窗口确定方法,对Curvelet变换域处理后的系数进行逆变换,再经过指数变换后得到降斑的侧扫声呐图像。实验结果表明,在客观评价指标和主观视觉效果方面,新方法均取得了优于传统的空间滤波及基于小波的降斑方法的效果。 A curvelet domain method based on Bayesian estimation is proposed for side-scan sonar image despeckling.A multiplicative speckle noise model of Rayleigh distribution is established according to seabed scattering model.Sonar images are decomposed in curvelet domain after logarithmic transform.In curvelet domain,according to Rayleigh distribution of noise and Gaussian distribution of signal,the theoretical expression of coefficient estimation is obtained using maximum a posteriori estimation of Bayesian theory.Using local adaptive neighborhood window determination method,inverse curvelet transform is carried out to the coefficients of curvelet transform and then exponential transform is performed to obtain final side-scan sonar images.Experimental results show that the new method is superior to traditional spatial filtering methods and wavelet-based despeckling methods in terms of both objective evaluation and subjective visual effect.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期170-177,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60972101 60872096) 疏浚技术教育部工程研究中心开放基金(HDCN08002) 中央高校基本科研业务费专项基金(2009B31814)资助
关键词 声呐图像 降斑 贝叶斯估计 CURVELET 局部自适应 sonar image despeckling Bayesian estimation curvelet local adaption
  • 相关文献

参考文献22

  • 1HELLEQUIN L, BOUCHER J. Processing of high-frequency muhibeam echo sounder data for seafloor charac- terization [J].IEEE Journal of Oceanic Engineering, 2003,28( 1) :78-89.
  • 2李启虎.数字式声呐设计原理[M].合肥:安徽教育出版社,2002.
  • 3姜可宇,蔡志明,陆振波.海底混响中基于前后向预测模型的信号检测[J].电子学报,2007,35(9):1766-1769. 被引量:7
  • 4CERVENKA P, DE MOUSTIER C. Sidescan sonar image processing techniques[ J]. IEEE Journal of Oceanic Engineering, 1993,18 (2) : 108-122.
  • 5ATALLAH L, SHANG C, BATES R. Object detection at different resolution in archaeological side-scan sonar images[ C ]. Proc. of IEEE Oceans 2005 Conference Europe, 2005,1:287-292.
  • 6李海滨,滕惠忠,宋海英,孙磊,郭思海,张靓,辛宪会.小波函数对侧扫声纳图像滤波效果的影响分析[J].海洋测绘,2009,29(3):65-67. 被引量:8
  • 7喻琪,夏顺仁,丛卫华,张峰山,杨晓帆.基于小波系数相关性和模糊理论的声纳图像处理[J].浙江大学学报(工学版),2008,42(12):2151-2155. 被引量:5
  • 8桑恩方,沈郑燕,卞红雨,葛光涛.形态小波域声纳图像去噪算法[J].数据采集与处理,2010,25(3):324-329. 被引量:10
  • 9ISAR A, MOGA S, ISAR D. A new denoising system for SONAR images [ J ]. Journal on Image and Video Processing, 2009, Article ID 17384:1-14.
  • 10MIGNOTTE M, COLLET C, PEREZ P, et al. Sonar image segmentation using an unsupervised hierarchical MRF model [ J ]. IEEE Transactions on Image Processing, 2000,9(7) :1216-1231.

二级参考文献101

共引文献81

同被引文献179

引证文献15

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部