期刊文献+

UCAV对地多目标序次攻击决策研究 被引量:2

Research on Air-to-ground Multi-target Sequential Attack Decision for Unmanned Combat Air Vehicle
在线阅读 下载PDF
导出
摘要 在增强无人机战斗力的研究中,针对无人作战飞机(UCAV)对地多目标序次攻击决策问题展开研究,建立多目标序次攻击的决策模型。为提高UCAV执行多目标攻击任务的成功率,决策模型综合考虑了UCAV在整个任务过程中所面临的战场风险,并将决策算法与航路规划问题分解,提出一种基于威胁分布密度的飞机生存概率评估方法,提高了决策效率。将序次决策问题转化为最优搜索问题,利用自适应蚁群算法求解决策问题并给出具体算法流程。仿真结果表明,多目标序次攻击决策方法能有效解决复杂战场环境分布所带来的目标排序优化问题,给出合理的多目标攻击时序,为方案设计提供了依据。 Aimed at the UCAV decision problem in air-to-ground multi-target sequential attack,founded a decision model of it.In order to enhance the success rate in executing multi-target attacking mission,this integrative model concerned the battle field risk during the period of executing mission of the UCAV,considered decision algorithms and air route planning separately,given a survival rate estimation method based on the distribution density of threatens,improved the efficiency of decision.Using Ant Colony Algorithm in solving the decision problem converted the decision problem to optimal searching problem,given the flow of the algorithm.The simulation result shows that this targets sequence optimize problem caused by complex battle field environment distribution can be solved by the method of multi-target sequential attacking efficaciously,and can give a reasonable multi-target attacking sequence in time.
机构地区 西北工业大学
出处 《计算机仿真》 CSCD 北大核心 2010年第12期51-54,78,共5页 Computer Simulation
关键词 无人作战飞机 序次攻击 多目标决策 自适应蚁群算法 UCAV Sequential attack Multi-target decision Adaptive ant colony algorithm
  • 相关文献

参考文献5

二级参考文献36

共引文献17

同被引文献25

  • 1王庆江,高晓光.空对面激光制导导弹的仿真与作战效能评估[J].计算机工程与应用,2007,43(31):202-205. 被引量:4
  • 2丁琳,高晓光,王笑.多UCAV编队攻击地面多目标的方法研究[J].系统仿真学报,2007,19(21):4864-4867. 被引量:3
  • 3SCHUMACHER C, CHANDLER P, PACHTER M, et al. UAV task assignment with timing constraints (A0343246) [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit Austin, Texas, 2003, doi: 10. 2514/6. 2003- 5664.
  • 4BEARD R W, MCLAIN T W, GOODRICH M A , et al. Coordinated target assignment and intercept for unmanned air vehicles [ C ]//IEEE Transaction on robotics and auto- mation, 2002, 18 ( 6 ) : 911-922.
  • 5CALLANR.人工智能[M].黄厚宽,田盛丰,译.北京:电子工业出版社,2002:84-124.
  • 6WANG Q, GAO X G, CHEN D Q. Pattern recognition for ship based on Bayesian networks [ C ]//4th International Conference on Fuzzy Systems and Knowledge Discovery, 2007, 4:684-688.
  • 7肖秦琨.基于动态贝叶斯网络的智能自主优化机制研究[D].西安:西北工业大学,2007.
  • 8POROPUDAS J, VIRTANEN K. Analyzing air combat simulation results with dynamic Bayesian networks [ C ]//Simulation Conference, 2007 : 1370-1377.
  • 9KANE M J, SAVAKIS A. Bayesian network structure learning and inference in indoor vs outdoor inage classifi- cation[ C]//Proceedings of the 17th International Con- ference on Pattern Recognition, 2004:479-482.
  • 10孙维维,李静,杨凌杰.基于混合遗传算法的MTSP问题研究[J].中国制造业信息化(学术版),2008,37(7):58-62. 被引量:2

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部