期刊文献+

基于人工神经网络和专家系统的精炼过程钢水温度预测模型 被引量:6

Forecasting model for the molten steel temperature in refining furnace based on artificial neural network and expert system
在线阅读 下载PDF
导出
摘要 通过分析影响精炼炉冶炼过程中钢水温度变化的主要因素,利用BP人工神经网络与专家控制相结合方法,建立了精炼过程钢水温度预测模型,并利用C#语言编程实现。应用该模型对精炼炉钢水温度进行预测,对预测结果进行了统计分析。结果表明,该模型对精炼过程钢水温度的预报误差为±5℃,准确率达到85%。 This article analyzed the main factors which influence the molten steel temperature changing in refining process of the furnace,build forecasting model for molten steel temperature by the combination of BP artificial neural network and expert control and the model can be operated by use of C# language programming.The model can be used to forecast the temperature of molten steel in refining furnace and the results of statistic analysis show that the temperature deviation of molten steel in refining furnace forecasted by this model is ±5℃,the hit rate reaches 85%.
作者 李强 曹刚
出处 《重型机械》 2010年第6期22-25,共4页 Heavy Machinery
关键词 温度预估 神经网络 专家系统 temperature forecast neural networks expert system
  • 相关文献

参考文献10

二级参考文献22

  • 1阎立懿,肖玉光,李延智,刘一心,胡显坤.LF炉变压器容量及技术参数确定[J].冶金设备,2006(3):55-58. 被引量:5
  • 2殷瑞钰.钢铁制造过程的多维物流控制系统[J].金属学报,1997,33(1):29-38. 被引量:50
  • 3李晨隽.三种钢水电加热方法热效率的实验研究[M].沈阳:东北工学院,1993..
  • 4马廷温.电炉炼钢学[M].北京:冶金工业出版社,1993..
  • 5武拥军.钢的液相线温度预报方法及LF炉精炼过程钢水温度预报技术研究[M].沈阳:东北大学,1999..
  • 6HOPPMANN W,FETT F N.Energy Balance of a Ladle Furnace[J].MPT,1989(3):38-42.
  • 7傅杰.发展我国钢的二次精炼技术的建议[J].特殊钢,1999,20:23-25.
  • 8Abhay Bulsari. Steel casting diagnostics in an artificial neural network[J]. Steel Making Conference Proceeding, 1992,(6):883.
  • 9Kung S Y,Hwang J N. A unified systolic architecture for artificial neural networks[J]. Parallel and Distributed Computing, 1989,6(2):206-208.
  • 10Ho K L. Short term load forecasting using a multiplayer neural network with an adaptive learning algorithm[J]. IEEE Transaction on Power Systems, 1992,7(1):141-149.

共引文献60

同被引文献60

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部