摘要
任意次的F-Bézier基统一了三角多项式空间上的C-Bézier基和双曲多项式空间上的H-Bézier基,我们证明这种基函数具有类似于基函数的优良性质,包括端点性质、对称性、升阶性质、线性无关性等,并且证明当形状参数趋于零时F-Bézier基收敛Bernstein基.
F-Bézier basis of arbitrary order unifies C-Bézier basis and H-Bézier basis defined over trigonometric polynomial space and hyperbolic polynomial space respectively.We prove this kind of basis has similar optimal properties to Bernstein basis,including endpoints properties,symmetry,degree-elevation and linear independence.In addition,F-Bézier basis is proved to converge to Bernstein basis when the shape parameter tends to zero.
出处
《大学数学》
2010年第6期118-122,共5页
College Mathematics
基金
浙江省教育厅资助项目(20060676)