摘要
为了准确反映矩形箱梁(b1≠b2)翼板和悬臂板的剪滞变化幅度,分别对上下翼板和悬臂翼板设置了一个不同的剪滞纵向动位移差函数(u1(x,t),u2(x,t)),提出了一种对薄壁箱梁动力学特性的分析方法。以能量变分原理为基础建立了矩形截面箱梁动力反应w(x,t)、u1(x,t),u2(x,t)和θ(x,t)的控制微分方程和自然边界条件,获得了相应广义位移的闭合解,揭示了箱形梁桥动力反应的规律,说明了大悬臂板矩形箱梁(b1≠b2)双翘曲位移差函数设置的必要性。算例中,解析解与有限元数值解进行了比较,证明了该动力分析方法的有效性。
An approach for analyzing dynamic response of a rectangular thin-walled box girder used in engineering was proposed here,in consideration of two different longitudinal displacement difference functions,to accurately reflect the amplitude of change of shear lag in the thin-walled box girder with various widths of wing slabs( ).The differential equations and the corresponding natural boundary conditions of the box girder with large cantilever slabs were induced based on the minimum potential principle,and the closed-form solutions of the generalized dynamic displacements w(x,t),θ(x,t),u1(x,t),and u2(x,t) were obtained.According to the fundamental differential equations and the corresponding natural boundary conditions,the dynamic characteristics of the thin-walled box girder were discussed.In examples,the finite element solutions were compared with the analytical ones and the results verified the validity of the proposed approach.
出处
《振动与冲击》
EI
CSCD
北大核心
2010年第11期61-65,共5页
Journal of Vibration and Shock
基金
国家自然科学基金(50578054)资助项目
关键词
桥梁工程
剪力滞后
动力反应
能量变分原理
矩形薄壁箱梁
bridge engineering
shear lag effect
dynamic response
energy-variation principle
rectangular thin-walled box girder