期刊文献+

一种改进的差分进化自动聚类算法 被引量:2

A Modified Automatic Clustering Algorithm for Differential Evolution
在线阅读 下载PDF
导出
摘要 针对基于进化算法的自动聚类方法具有收敛速度慢的缺陷,为回忆收敛性,提高算法精度,提出一种改进的差分进化自动聚类算法。算法从改进染色体评价过程中的解码方式,依据由染色体解码得到的聚类数和质心集,通过质心筛选和质心聚类两步操作,从包含于染色体中的聚类划分簇中提取较优的聚类划分,从而避免了因随机解码方法导致的对染色体的错误评价,使较优的染色体能够在种群进化中存活下来。仿真结果表明,新算法的收敛速度明显好于同类算法,并且收敛精度也有改善。 Automatic clustering algorithms based on evolution computation have slow convergence rates.In this paper,we propose a modified algorithm with faster convergence rate based on differential evolution.The departure point of the proposed algorithm is to improve the way chromosomes are rated in the decoding process.Based on the number of clusters and the set of centroids obtained from chromosome decoding,the algorithm can obtain an optimized partitioning of the data set through the operations of selecting and clustering,and can thus effectively avoid incorrect ratings for the chromosomes due to random decoding.In this way,the better chromosomes are preserved in the evolution process.Simulation results show that the new algorithm can achieve much faster convergence rate and improved the accuracy than alternative methods.
作者 潘章明
出处 《计算机仿真》 CSCD 北大核心 2010年第11期69-72,135,共5页 Computer Simulation
关键词 自动聚类 差分进化 全局优化 Automatic clustering Differential evolution(DE) Global optimization
  • 相关文献

参考文献7

  • 1Rui Xu, Donald Wunsch II. Survey of clustering algorithms[ J]. IEEE Transactions on Neural networks, 2005,16 (3 ) :645 - 678.
  • 2S Bandyopadhyay and U Maulik. Genetic clustering for automatic evolution of clusters and applieation to image elassifieation[J]. Pattern Reeogit. , 2002,35 (6) : 1197 - 1208.
  • 3Mahamed G H Omran, Andries P Engelbrecht and Ayed Salman. Dynamic clustering using particle swarm optimization with application in unsupervised image classification[ C].Proceedings of World Academy of Science, Engineering and Technology, 2005,9 (11 ) : 199 - 204.
  • 4A Abraham, S Das and S Roy. Soft computing for knowledge discovery and data mining[ M ]. Springer US,2007. 279 - 313.
  • 5Swagatam Das, Ajith Abraham and Amit konar. Automatic clustering using an improved differential evolution algorithm [ J ]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2008,38( 1 ) :218 -236.
  • 6刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:294
  • 7K Ziclinski, X Wang and R Laur. Comparison of adaptive approaches for differential evolution[ C]. Proceedings of the 10th International Conference on Parallel Problem Solving from Nature: PPSN X. Experimental Analysis. 2008.641 -650.

二级参考文献81

共引文献293

同被引文献27

  • 1Thomas L C, Edelman D B, Crook J N. Credit scoring and its applications [M]. Philadelphia, PA: SIAM, 2002.
  • 2Hand D J, Henley W E. Statistical classification meth- ods in consumer credit scoring: A review[J]. Journal of the Royal Statistical Society: Series A, 1997,160(3): 523-541.
  • 3Martin D. Early warning of bank failure: A logit regres- sion approaeh[J]. Journal of Banking and Finace, 1977, 1(3) :249-276.
  • 4West D. Neural network credit scoring models E J 1. Computer ~ Operations Research, 2000,27 ( 11 ) : 1131 - 1152.
  • 5Huang C L, Chen Muchen, Wang C J. Credit scoring with data mining approach based on support vector ma- chines[J]. Expert Systems and Applications,2007,33 (4) : 847-856.
  • 6Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[M~. Berkeley~ ICSI, 1995.
  • 7Storn R,Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4) :341-359.
  • 8Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics Part A:Systems and Humans,2008,38(1):218-236.
  • 9Bandyopadhyay S, Maulik U. Genetic clustering for automatic evolution of clusters and application to image classification[J]. Pattern Recognit, 2002,35 (6) : 1197 -1208.
  • 10Omran M, Salman A, Engelbrecht A. Dynamic cluste- ring using particle swarm optimization with application in unsupervised image clas sification[J]]. Pattern Anal- ysis and Applications, 2006,8(4) :332-344.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部