期刊文献+

基于Boosting-SVM算法的航空发动机故障诊断 被引量:11

Aero-engine fault diagnosis based on Boosting-SVM
原文传递
导出
摘要 提出了一种利用支持向量机(SVM)作为弱基分类器、Boosting算法进行加权融合的航空发动机故障诊断算法.该算法具有支持向量机的强分类能力,又具有Boosting算法适合不均衡数据集的特点.为验证算法的有效性,采用外场实测的滑油光谱分析数据针对传动系统的轴承、减速齿轮和滑油系统3类故障进行了验证.为去除实测数据之间的冗余、降低特征维数,提高算法执行效率,采用主元分析(PCA)和粗糙集理论(RST)进行故障特征压缩和提取.利用实测数据构造了Boosting支持向量机分类器.最后,实验结果表明Boosting-SVM算法可以显著提高SVM分类器的推广性能.针对实测数据,3种故障平均识别准确率由79.4%提高到了85.7%. A fault diagnosis algorithm based on Boosting and support vector machines for aero-engine was proposed.The algorithm adopts support vector machine(SVM) with linear kernel as weak learners and use Boosting algorithm to generate a set of weak learners and then fuse all the learners via weighting.The algorithm both possesses the virtue of SVM and Boosting,which separately shows strong classification ability and superiority for imbalanced datasets.To validate the efficiency of the new algorithm,the typical bearing faults,the main deduction gear faults,and the oil system faults were investigated via real inspection data.In order to reduce the redundancy of the features,principal component analysis(PCA) and rough set theory(RST) were used to determine the richest features.Then,a Boosting-SVM classifier was build using the training data.Results towards the testing data show that the proposed Boosting-SVM algorithm gives a better average success rate than standard SVM,which is significantly improved from 79.4% to 85.7%.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第11期2584-2588,共5页 Journal of Aerospace Power
关键词 航空发动机 故障诊断 支持向量机 BOOSTING算法 加权融合 aero-engine; fault diagnosis; support vector machine(SVM); Boosting algorithm; weighted fusion;
  • 相关文献

参考文献10

  • 1叶志锋,杨固东,苏伟生.基于试车数据的发动机神经网络模型[J].南京航空航天大学学报,2007,39(1):26-29. 被引量:7
  • 2尉询楷,陆波,汪诚,路建明,李应红.支持向量机在航空发动机故障诊断中的应用[J].航空动力学报,2004,19(6):844-848. 被引量:29
  • 3Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2(2) :8 -34.
  • 4LIU Hongwei,BAO Zheng. Radar HRR profiles recognition based on SVM with power-transformed correlation kernel [J]. Springer Lecture Notes in Computer Science, 2004,3173:531-536.
  • 5张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303-1306. 被引量:89
  • 6张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7Freund Y,Schapire P, E. Experiments with a new Boosting algorithm[C]//Proc. 13th International Conference on Machine Learning. SanFrancisco: Morgan Kaufmann, 1996:148- 146.
  • 8Jollife I T. Principal component analysis[M]. Berlin: Springer Verlag, 2002 : 10-76.
  • 9LI Renpu, WANG Zhengou. Mining classification rules using rough sets and neural networks[J]. European Journal of Operational Research, 2004,157(2) :439-448.
  • 10WEI Xunkai, LI Yinghong. Enclosing machine learning concepts and algorithms[J]. Neural Computing and Applications,2008,17(3) :237- 243.

二级参考文献18

  • 1何正嘉 訾艳阳 等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2000,1..
  • 2Vapnic V.The Nature of Statistical Learning[M].New York:Springer,1998.
  • 3Amari S,Wu S.Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J].Neural Networks,1999,12:783-789.
  • 4Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):8-34.
  • 5Scholkopf B,Sung K K,Burges C,et al.Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers[J].IEEE Trans on Signal Processing,1997,45:2758-2765.
  • 6Weston J,Watkins C.Support Vector Machines for Multi-Class Pattern Recognition[A].In Proceedings of 7th European Symposium on Artificial Neural Networks (ESANN'99)[C].1999:219-224.
  • 7Sanna Poyhonen.Fault Diagnostics of an Electrical Machine with Multiple Support Vector Classifiers[A].In Proceedings of 2002 IEEE International Symposium on Intelligent Control[C].Vancouver:Canada,2002:373-378.
  • 8Yan Weiwu,Shao Huihe.Applications of Support Vector Machine Nonlinear Classifier to Fault Diagnoses[A].In proceedings of 4th World congress on intelligent control and automation[C].ShangHai,PR China,2002:2697-2700.
  • 9Howard Demuth. Mark beale and martin hagan neural network design[R]. Oklahoma State University,ISBN 0-9717321-0-8,1996.
  • 10Battiti R. First and second order methods for learning: Between steepest descent and Newton's method [J]. Neural Computation, 1992,4(2):141-166.

共引文献173

同被引文献149

引证文献11

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部