期刊文献+

基于目标传递和代理模型的水下结构振动声辐射设计优化 被引量:2

Design optimization for underwater structural vibration and acoustic radiation based on target cascading and surrogate model
在线阅读 下载PDF
导出
摘要 基于目标传递法和代理模型实现了水下结构振动声辐射的设计优化。目标传递法用于实施多级优化,Kriging代理模型用于解决水下结构振动声辐射计算量过大而无法实施设计优化的问题。以水下加肋板结构的振动声辐射为例构造了一个两级优化设计问题来验证所用方法的有效性。选取板厚,加强肋高度和加强肋宽度作为设计变量,以结构质量、共振频率、共振频率处的声功率级和共振频率间的差值作为优化目标来进行设计优化。研究结果表明Kriging代理模型可实时准确地代替耦合计算模型预报水下结构振动声辐射响应,使用目标传递法会由于目标权重和协调机制的不同而导致不同的优化结果,设计者可以根据实际需要从优化结果中选择合适方案。 Target cascading and surrogate model were employed for design optimization of underwater structural vibration and acoustic radiation.The target cascading was used for multilevel optimal design and the Kriging surrogate model based on computational efficieney was applied for predicting vibro-acoustic response.A design optimization problem of a two-level modeling hierarchy of a stiffened plate underwater was formalized to show the optimization procedure.The design variables were the plate thickness and the stiffener dimensions.The objectives of the optimization included the minimization of the structural mass,the maximization of the fundamental resonant frequency and the minimization of the corresponding radiated power level,and the maximization of the difference between the two chosen resonant frequencies.The results showed that the surrogate model gives very good approximation of the coupled computation model for predicting the resonant frequency and the corresponding sound power level with no computation time delay;the target cascading can be properly used for design optimization with different design tasks and different coordination strategies.
作者 黎胜
出处 《振动与冲击》 EI CSCD 北大核心 2010年第10期144-147,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10972046)
关键词 目标传递 代理模型 振动 声辐射 设计优化 target cascading surrogate model vibration sound radiation design optimization
  • 相关文献

参考文献11

二级参考文献99

  • 1郭小川,邓二年.美国海军水面舰船的多学科设计优化(二)[J].中外船舶科技,2004(2):1-6. 被引量:4
  • 2张科施,李为吉,李响.飞机概念设计的多学科综合优化技术[J].西北工业大学学报,2005,23(1):102-106. 被引量:9
  • 3何祚镛,王曼.水下非均匀复合层结构吸声的理论研究[J].应用声学,1996,15(5):12-19. 被引量:50
  • 4刘克龙,姚卫星,余雄庆.几种新型多学科设计优化算法及比较[J].计算机集成制造系统,2007,13(2):209-216. 被引量:12
  • 5Simpson T W, Booker A J, Ghosh D, et al. Approximation Methods in Muhidisciplinary Analysis and Optimization: A Panel Discussion [J]. Structural and Multidisciplinary Optimization, 2004,27 (5) : 302 - 313.
  • 6Jin R, Chen W and Simpson T W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria[J]. Journal of Structural and Multidisciplinary Optimization, 2001,23 ( 1 ) : 1 - 13.
  • 7Simpson T W, Peplinski J, Koch P N, et al. Metamodels for Computer- Based Engineering Design: Survey and Recommendations [ J ]. Engineering with Computers,2001, 17 (2) :129 - 150.
  • 8Simpson T W, Lin K J and Chen W. Sampling Strategies for Computer Experiments : Design and Analysis [ J ]. International Journal of Reliability and Applications, 2001,2 ( 3 ) :209 -240.
  • 9Giunta A A. Aircraft Muhidiseiplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods [ M ]. PhD dissertation, Virginia Polytechnic Institute, May 1997.
  • 10Simpson T W, Mauery T M, Korte J, et al. Comparison of Response Surface and Kriging Models for Muhidisciplinary Design Optimization[ R]. AIAA -98 -4755.

共引文献43

同被引文献18

  • 1曾会华,余雄庆.基于代理模型的气动外形优化[J].航空计算技术,2005,35(4):84-87. 被引量:12
  • 2Koopmann G H,Fahnline J B. Designing Quiet Structures[M].{H}San Diego:Academic Press,1997.
  • 3Koopmann G H,Limin S,Fahnline J B. A Method for Computing Acoustic Fields Based on the Principle of Wave Superposition[J].{H}Journal of the Acoustical Society of America,1989,(6):2433-2438.
  • 4Brian C Z. An Acoustic Superposition Method for Computing Structure Radiation in Spatially Digitized domain[D].State College:The Pennsylvania State University,2006.
  • 5Ranjbar M,Marburg S,Hardtke H J. Structural-acoustic Optimization of a Rectangular Plate:A Tabu Search Approach[J].{H}Finite Elements in Analysis and Design,2012.142-146.
  • 6Marburg S,Hardtke H J. A General Concept for Design Modification of Shell Meshes in Structural-acoustic Optimization--Part Ⅰ:Formulation of the Concept[J].{H}Finite Elements in Analysis and Design,2002,(8):725-735.
  • 7Marburg S,Hardtke H J. A General Concept for Design Modification of Shell Meshes in Structural-acoustic Optimization--Part Ⅱ:Application to a Floor Panel in Sedan Interior Noise Problems[J].{H}Finite Elements in Analysis and Design,2002,(8):737-754.
  • 8Azegami H,Fukumoto S,Aoyama T. Shape Optimization of Continua Using NURBS as Basis Functions[J].{H}STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION,2013,(2):247-258.
  • 9Kaneda S,Yu Q,Shiratori M. Optimization Approach for Reducing Sound Power from a Vibrating Plate by Its Curvature Design[J].{H}JSME International Journal Series C:Mechanical Systems Machine Elements and Manufacturing,2002,(1):87-98.
  • 10Christian S,Jean C M. Structural Shape Parametric Optimization for an Internal Structural Acoustic Problem[J].{H}AEROSPACE SCIENCE AND TECHNOLOGY,2000,(4):263-275.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部