期刊文献+

城市燃气负荷的混沌特性与预测 被引量:10

Chaotic Characters and Forecasting of Urban Gas Consumption
在线阅读 下载PDF
导出
摘要 采用混沌理论分析方法,对燃气负荷时间序列进行了相空间重构,通过计算关联维数和最大李亚普诺夫指数判定燃气负荷具有混沌的性质.在此基础上,分别采用基于混沌理论的加权一阶局域法、最大李亚普诺夫指数法和贝叶斯正则化神经网络模型对城市燃气日负荷进行了预测.实例预测结果表明,混沌时间序列分析方法可应用于燃气负荷预测研究,特别是结合了混沌理论、神经网络与贝叶斯正则化方法各自优点的神经网络模型取得了较好的预测效果. The urban gas consumption time series was analyzed with phase space reconstruction based on chaos theory.The chaotic characters of urban gas consumption were identified by calculating the correlation dimension and largest Lyapunov exponent.Then,several methods including weighted one-rank local-region method,largest Lyapunov exponent method and Bayesian regularization neural network model were applied on forecasting of daily urban gas consumption.The test results indicate that the chaotic time series analysis method is feasible to be used in urban gas consumption forecasting.Combined with the advantages of chaos theory,neural network and Bayesian regularization method,the forecasting performance of Bayesian regularization neural network model based on phase space reconstruction is especially good.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第10期1511-1515,共5页 Journal of Tongji University:Natural Science
基金 教育部高等学校博士学科点专项科研基金资助项目(20050247010)
关键词 燃气负荷 燃气供应 混沌理论 相空间重构 预测 gas consumption gas supply chaos theory phase space reconstruction forecasting
  • 相关文献

参考文献11

  • 1Gorucu F B,Geris P U. Artificial neural network modeling for forecasting gas consumption [J]. Energy Sources, 2004, 26 (3) :299.
  • 2Jebaraja S, Iniyanb S. A review of energy models [J ]. Renewable and Sustainable Energy Reviews, 2006,10 (4):281.
  • 3吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2005:24-25.
  • 4Kawauchi S, Sugihara H, Sasaki H. Development of very-shortterm load forecasting based on chaos theory[J].Electrical Engineering in Japan, 2004,148(2) : 55.
  • 5赵鹏,张宏伟.城市用水量的混沌特性与预测[J].中国给水排水,2008,24(5):90-93. 被引量:7
  • 6臧利林,贾磊,杨立才,刘涛.交通流实时预测的混沌时间序列模型[J].中国公路学报,2007,20(6):95-99. 被引量:12
  • 7Rosenstein M T,Collins J J,Deluca C J. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physica D:Nonlinear Phenomena, 1993,65(2): 117.
  • 8Yasar B, Yusuf O. Modeling and prediction with a class of time delay dynamic neural networks[J]. Applied Soft Computing, 2007, 7(4) : 1164.
  • 9Foresee F D, Hagan M T. Gauss-Newton approximation to Bayesian regularization[C] // International Joint Conference on Neural Networks. Piscataway NJ: IEEE Press, 1997: 1930- 1935.
  • 10李方方,赵英凯.贝叶斯框架下的LSSVM和贝叶斯网络及其应用[J].计算机工程与设计,2007,28(15):3647-3649. 被引量:8

二级参考文献34

共引文献77

同被引文献117

引证文献10

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部