期刊文献+

基于二代Curvelet变换与MPCA的可见光与红外图像融合 被引量:1

Fusion of infrared and visible images based on the second generation Curvelet transform and MPCA
在线阅读 下载PDF
导出
摘要 针对同一场景红外图像与可见光图像的融合问题,提出了一种基于二代Curvelet变换与模块化主成分分析(MPCA)的图像融合新方法。首先对原始图像分别进行快速离散Curvelet变换,得到不同尺度和方向下的粗细尺度系数;根据红外图像与可见光图像的不同物理特性以及人类视觉系统特性,对粗尺度系数的选择,采用基于模块化主成分分析(MPCA)的融合规则,确定融合权值,而对不同尺度与方向下的细尺度系数的选择,采用基于局部区域能量的融合规则;最后经Curvelet逆变换得到融合结果。实验结果表明,该方法能够更加有效、准确地提取图像中的特征,在主观视觉效果与客观评价指标上均取得了较好的融合效果,是一种可行有效的图像融合算法。 For the fusion problem of infrared and visible light images with the same scene, an image fusion algorithm based on the second generation Curvelet and Modular Principal Component Analysis (MPCA) was proposed. Firstly, the fast discrete Curvelet transform was performed on the original images to obtain coarse scale and fine scale coefficients at different scales and in various directions respectively. Secondly, according to the different physical features of infrared and visible light images and human visual system features, the fusion weights were determined by MPCA method for coarse scale coefficients; while the fusion rule based on local region energy was used for fine scale coefficients. Finally, the fusion results were obtained through the inverse Curvelet transform. The experimental results illustrate that the proposed algorithm is effective for extracting the characteristics of the original images and has better fusion results than others in the subjective visible effect and objective evaluation index.
出处 《计算机应用》 CSCD 北大核心 2010年第11期3011-3014,共4页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(BK20080544)
关键词 图像融合 CURVELET变换 模块化主成分分析 可见光图像 红外图像 image fusion Curvelet transform Modular Principal Component Analysis (MPCA) visible image infrared image
  • 相关文献

参考文献11

二级参考文献47

共引文献188

同被引文献24

  • 1楚恒,朱维乐.基于DCT变换的图像融合方法研究[J].光学精密工程,2006,14(2):266-273. 被引量:30
  • 2TANG J S.A contrast based image fusion technique in the DCT domain[J].Digital Signal Processing,2004,14(3):218-226.
  • 3PAJARES G.,CRUZ J M.A wavelet - based image fusion tutorial[J].Pattern Recognition,200437(9):1855-1872.
  • 4CHOI M,KIM R Y,NAM M R,et al.Fusion of multispectral and panchromatic satellite images using the Curvelet transform[J].IEEE Trans.Geoscience and Remote Sensing Letters,2005.2(2):136-140.
  • 5JlANG Y,WANG M H.Image fusion with morphological component analysis[J].Information Fusion,2014(18):107-118.
  • 6STARCK J L,ELAD M.DONOHO D.Redundant multiscale trans-fonns and their application for morphological component analysis[J].Advances in Imaging and Electron Physics,2004,132(82):287-348.
  • 7STARCK J L,ELAD M.DONOHO D.Image decomposition via the combination of sparse representation and a variational approach[J].IEEE Trans.Image Processing,2005.14(10):1570-1582.
  • 8ELAD M.STARCK J L,QUERRE P,et al.Donoho.simultaneous cartoon and texture image inpainting using morphological component analysis(MCA)[J].Appl.Comput.Harmon.Anal,2005.(19):340-358.
  • 9FADlLI M J.STARCK J L.An algorithm for sparse representation-based image inpainting[C]//Proc.IEEE International Conference on Image Processing.Genoa,Italia:IEEE Press.2005:61-63.
  • 10DUBOIS S,PETERI R,MENARD M.Decomposition of dynamic textures using morphological component analysis[J].IEEE Trans.Circuits and Systems for Video Technology,2012,22(2):188-201.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部