期刊文献+

带调整策略的微聚类-宏聚类邮件社区划分算法 被引量:2

Mail Community Partition Algorithm with Adjustment Based on Micro-macroclustering
在线阅读 下载PDF
导出
摘要 讨论邮件社区的划分及邮件社区的性质;提出一种基于微-宏聚类的邮件社区划分算法,在宏聚类之后加入了调整划分策略,显著提高了划分质量.本算法根据邮箱通信行为特征定义邮箱间的联系紧密度,采用微聚类-宏聚类找到联系比较紧密的簇,然后通过对个别节点做合理的簇间调整来找到真正的结果簇.实验表明,这种社区划分算法能够发现高质量的社区. Discussed the mail community partition and the property of the mail community, and proposed an mail community partition algorithm based on micro-macroclustering, the most important, we adopt an adjustment method after the macroclustering and improve the quality of the communities obviously. Our algorithm evaluates the closeness between two mailboxes based on the characteristics of mailboxes communication behavior, we use micro-macroclustering method to fred the clusters, t-really get the true results through adjusting several nodes between communities. The experiments show that our mail community partition algorithm can find the communities with high quality.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第10期1970-1973,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60773048)资助
关键词 社会网络 邮件社区划分 微聚类 宏聚类 social network mail community partition microclustering macroclustedng
  • 相关文献

参考文献9

  • 1Wen-Feng Hsiaoa, Te-ming Changb, Guo-Hsin hua. A cluster- based approach to filtering spam under skewed class distributions [ C] . Proceedings of the 40th Hawaii International Conference on System Sciences,2007, 1-3.
  • 2Zhang Yan-chun. Web communities analysis and construction[ R]. VLDB School Lecture, 2005,56-92.
  • 3Liu Yah,Wang Qing-xian;Wang Qiang,et al. Email community detection using artificial ant colony clustering [ C ]. Lecture Notes in Computer Science, 2007,1-10.
  • 4Lin Hui, Fan Wei-guo, Linda Wallace. An empirical study of webbased knowledge community success[ C]. Proceedings of the 40th Hawaii International Conference on System Sciences ,2007,1-9.
  • 5Li Fu-lu, Mo-Han Hsieh. An empirical study of clustering behavior of spammers and group-based anti-spare strategies [ C ]. Proceedings of the 40th Annual Hawaii International Conference on System Sciences, 2007,1-10.
  • 6Shlomo Hershkop. Behavior-based email analysis with application to spam detection [ D ]. Graduate School of Arts and Sciences, 2006,40-77.
  • 7Girvan M, Newman M E J. Community structure in social and biological networks[ J]. In: Proceedings of the National Academy of Sciences of the United States of America, USA ,2002.
  • 8Han Jia-wei, Micheline Kamber. Data mining: concept and techniques (2nd) [ M]. Beijing: China Machine Press,2001,261 -273.
  • 9陈绍宇,宋佳兴,刘卫东,王诚.关系网格:一种基于小世界模型的社会关系网络[J].计算机应用研究,2006,23(5):194-197. 被引量:14

二级参考文献5

  • 1D Watts, S Strogatz. Collective Dynamics of ‘ Small World' Networks[J]. Nature, 1998,393(6684) :440-442.
  • 2I Foster, C Kesselman, S Tueckel. The Anatomy of the Grid: Enabling Scalable Virtual Organizations[ C ]. Proceedings of the 1 st IEEE/ACM International Symposium on Cluster Computing and the Grid,2001.6-7.
  • 3S Wasserman, K Faust. Social Network Analysis: Methods and Applications[ M]. Cambridge: Cambridge University Press, 1994.
  • 4M H Zack. Researching Organizational Systems Using Social Network Analysis[ C]. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000.
  • 5Y Upadrashta, J Vassileva, W Grassmann. Social Networks in Peer-to-Peer Systems[ C ]. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005.

共引文献13

同被引文献23

  • 1Hsiao Wen-Feng,Chang Te-Ming, Hu Guo-Hsin. A Cluster- based Approach to Filtering Spam under Skewed Class Distributions[C]//Proc of the 40th Hawaii International Conference on System Sciences, 2007:53 - 60.
  • 2Li Fulu, Hsieh Mo-Han. An Empirical Study of Clustering Behavior of Spammers and Group-based Anti- Spam Strategies[C]//Third Conference on Email and Anti-Spam, 2006:27 - 28.
  • 3LATHIA N, PEJOV1C V, RACHUR! K K, et al. Smartphones for large-scale behaviour change interventions [ J ]. IEEE Pervasive Computing to Appear, 2013, 12(3 ) : 66-73.
  • 4N1CHOI,AS D L, MILUZZO E, H()N(; 1,, et al. A survey of mobile phone sensing [ J ]. Communications Magazine, 2010, 48 (9) : 140-150.
  • 5GONZALEZ M C, HIDALGO C A, BARABASI A 1., et al. Under- standing individual human mobiliy patterns [ J ]. Nature, 2009, 458(7235 ) :238-239.
  • 6CHEN T S, CHOU Y S, CHEN T C. Mining user movement behavior patterns in a mobile service environment [ J]. IEEE Trans on Sys- tems, Man, and Cybernetics: Systems, 2012, 42( 1 ) : 87-101.
  • 7NICHOI,AS D L, YE X, HONG I,, et al. Enabling large-scale hu- man aclivity inference on smart phones using community similarity networks [C ]//Proc of the 13th lntenmtional Conference on Ubiqui- tous Computing. Washin~on DC: IEEE Computer Society, 2011: 355- 364.
  • 8De MEO P, FERRARA E, FIUMARA G et al. Enhancing commu- nity detection using a nekwork weighting stratt-gy [ J ]. Information Sciences, 2013, 222: 648-668.
  • 9PAPADAKIS H C, PANAGIOTAKIS C, FRAGOPOUI.OU P. Loca- ling communities on graphs with variations in community sizes [J]. Journal of Supercomputing, 2013, 65 (2): 543-561.
  • 10ZHANG H Q, DANTU R, CANGUSSU J W. Socioscope: human re- lationship and behavior analysis in social networks [ J ]. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Hu-mans, 2011, 141(6): 1122-1143.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部