期刊文献+

基于双树小波通用隐马尔可夫树模型的图像压缩感知 被引量:14

Image Compressed Sensing Based on Universal HMT of the Dual-tree Wavelets
在线阅读 下载PDF
导出
摘要 标准压缩感知图像重构仅利用图像小波系数具有稀疏性的先验知识,未能利用小波系数的结构分布特性。利用基于模型压缩感知重构思想,将能有效描述图像小波系数分布特性的隐马尔可夫树(HMT)模型引入到图像的压缩感知重构。经过理论推导,将基于HMT模型的重构转化为型如标准图像压缩感知重构的优化问题,并提出基于贝叶斯优化的凸集交替投影法进行求解。为进一步提高重构质量和速度,引入了双树小波域通用HMT(uHMT)模型及改进的uHMT(iuHMT)模型代替小波域HMT模型。实验结果表明,基于双树小波域iuHMT模型的重构图像的平均峰值信噪比(PSNR)比uHMT模型高0.97dB. The standard Compressed Sensing(CS) reconstructions of image exploit simply the sparse priors of the wavelet coefficients,ignoring the structural information of the wavelet coefficients.In this paper,the Hidden Markov Tree(HMT ) model is integrated in the compressed sensing,which has been found successful in capturing the key features of the joint probability density of the wavelet coefficients of real-world image.An optimization issue which is similar to the standard compressed sensing is derived from the MAP reconstructions for the image based on HMT model,and an alternating convex projection algorithm based on Bayesian optimization is proposed.What's more,a universal HMT(uHMT) model based on the dual-tree wavelet transform and its improved form are integrated to improve the reconstruction performance further,instead of the HMT model of the orthogonal wavelet transform.As the experiments show,the average Peak Signal-to-Noise Ratio(PSNR) of the reconstructed image based on the improved uHMT(iuHMT) model in the dual-tree wavelets domain outperforms uHMT model 0.97 dB.
作者 练秋生 王艳
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第10期2301-2306,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60772079) 河北省自然科学基金(F2010001294)资助课题
关键词 压缩感知 模型压缩感知 双树小波 uHMT模型 凸集交替投影 Compressed Sensing (CS) Model-based CS Dual-tree wavelet uHMT model Alternating convex projection
  • 相关文献

参考文献18

  • 1Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candes E J nd Romberg J T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 3Blumensath T and Davies M E.Iterative thresholding for sparse approximations[J].Journal of Fourier Analysis and Applications,2008,14(5):629-654.
  • 4Bregman L M.The method of successive projection for finding a common point of convex sets[J].Soviet Math,1965,6(3):688-692.
  • 5Chartrand R and Yin Wotao.Iteratively reweighted algorithms for compressive sensing[C].IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,USA,2008:3869-3872.
  • 6Chartrand R.Exact reconstruction of sparse signals via nonconvex minimization[J].IEEE Signal Processing Letters,2007,14(10):707-710.
  • 7Mohimani G H,Babaie-Zadeh M,and Jutten C.A fast sparse approach for overcomplete sparse decomposition based on smoothed norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
  • 8Needell D and Tropp J A.CoSaMP:Iiterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2008,26(3):301-321.
  • 9Needell D and Vershynin R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317-334.
  • 10Baraniuk R G,Cevher Volkan,and Marco T D,et al..Model-Based compressive sensing[J].IEEE Transactions on Information Theory,2010,56(4):1982-2001.

二级参考文献17

  • 1Battiato S, Gallo G, Stanco F. A locally-adaptive zooming algorithm for digital images[J]. Image Vision and Computing, 2002, 20(11): 805~812
  • 2Baker S, Kanade T. Limits on super-resolution, how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167~1183
  • 3Baker S, Kanade T. Hallucinating faces[A]. In: Proceedings of the 4th IEEE International Conference on Automatic Face, Gesture Recognition, Grenoble, 2000. 83~89
  • 4Daubechies I. Ten Lectures on Wavelets[M]. Montpelier: Capital City Press, 1992
  • 5Mallat S. A Wavelet Tour of Signal Processing[M]. San Diego: Academic Press, 1998
  • 6Crouse Matthew S, Nowak Robert D, Baraniuk Richard G. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886~902
  • 7Romberg Justin K, Choi Hyeokho, Baraniuk Richard G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1056~1068
  • 8Coifman R R, Donoho D L. Translation-invariant de-noising[R]. San Francisco: Stanford University, 1995
  • 9Schultz Richard R, Stevenson Robert L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(5): 233~242
  • 10Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996~1011

共引文献20

同被引文献132

引证文献14

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部