期刊文献+

基于支持向量机的垃圾标签检测模型 被引量:11

SVM-based social spam detection model
在线阅读 下载PDF
导出
摘要 为解决Folksonomy存在垃圾标签的问题,提出垃圾标签检测模型。利用向量空间模型表征用户特征,再用支持向量机将Folksonomy用户二分类。通过检测出隐藏在正常用户群体中的垃圾投放人,以此减少垃圾标签数量。实验结果表明,基于支持向量机的垃圾标签检测模型具有更高的分类精度,优于其他检测方法。 The popular social bookmarking sites were always attacked by social spam. This paper designed a SVM-based social spam detection model to solve this problem. That was using VSM to build the user model ,and then divided the users of the sites into two classes by SVM,of which one was the normal,the other was spammer. So cut off the social spam by reducing the spammer. The result of the experiment shows that the classification accuracy of SVM-based social spam detection model is higher than others.
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3893-3895,共3页 Application Research of Computers
关键词 垃圾标签 社会化标签系统 支持向量机 检测模型 social spam social bookmark system SVM( support vector machines) detection model
  • 相关文献

参考文献9

  • 1BROADLY. Social spam definition [ EB/OL ]. (2008- 7- 21 ). http ://www. bryanehen.com/2008/07/21/soeial-spam/.
  • 2KIM C J, HWANG K B. Naive Bayes classier learning with feature selection for spam detection in social bookmarking [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag,2008.
  • 3GRAMME P, CHEVALIER J F. Rank for spam detection[ C]//Lecture Notes in Computer Science. Berlin: Springer-Verlag,2008.
  • 4MADKOUR A, HEFNI T, HEFNY A, et al. Using semantic features to detect spamming in social bookmarking systems [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag,2008.
  • 5VAPNIK V N. The nature of statistical learning theory[ M ]. 2nd ed. New York : Springer-Verlag, 1995 : 30- 90.
  • 6CORTES C, VAPNIK V N. Support vector networks [ J]. Machine Learning, 1995,20 ( 3 ) :272-297.
  • 7邓乃阳,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.
  • 8HOTHO A, JASCHKE R, SCHMITZ C, et al. Emergent semantics in BibSonomy[M]. Liskowsky:GI Jahrestagung,2006:305-312.
  • 9SALTON G, McGILL M J. Introduction to modem information retrieval[ M ]. New York : McGraw-Hill, 1983 : 1 - 12.

共引文献2

同被引文献148

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部