期刊文献+

基于GA-Transmodeler的动态OD矩阵估计方法 被引量:1

GA-Transmodeler based time-dependent origin-destination estimation
在线阅读 下载PDF
导出
摘要 采用系统仿真与遗传优化算法相结合的方法完成离线状态下多时段OD矩阵的估计。系统仿真旨在对多时段的动态OD矩阵实现连续动态交通分配,以得到在各个时段的OD流量对观测路段的分配比例矩阵,遗传算法则通过种群内个体的交叉、变异等遗传算子求解最优条件下的OD矩阵。仿真结果表明,这种仿真优化结合的方法能够充分体现动态交通流的延续性,且遗传算法具有较强的全局收敛性。 This paper used a hybrid simulation-genetic algorithm method to accomplish off-line dynamic OD matrix estimation. The aim of simulation was to accomplish dynamic OD matrix thus OD-to-link flow proportion would be calculated while genetic algorithm was used to solve optimization function by crossover,mutation operator etc. The continuity of dynamic traffic flow and strong global convergence inherent in GA can be verified by the simulation cases.
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3646-3650,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2007AA11Z203)
关键词 遗传算法 动态OD矩阵 仿真 genetic algorithm dynamic OD matrix simulation
  • 相关文献

参考文献9

  • 1LIMITED Q. Paramics v4.0 system overview [EB/OL]. ( 2002 ). http://www. paramics-online. com/tech_support/documents/v4/Paramics v4-SystemOverview. zip.
  • 2YANG Qi. A simulation laboratory for evaluation of dynamic traffic management system [ D ]. Cambridge, MA : Massachusetts Institute of Technology, 1997.
  • 3CASEY H J. Applications to traffic engineering of the law of retail gravitation[ J]. Traffic Quart, 1955,9( 1 ) :23-25.
  • 4WILSON A G. Entory in urban and regional modelling[ M]. London: Pion Press, 1970.
  • 5ZUYLEN H J van, WILLUMSEN L G. The most likely trip matrix esti- mated from traffic courits [ J ]. Transportation Res B, 1980,14 ( 3 ) : 281-293.
  • 6林勇,蔡远利,黄永宣.基于卡尔曼滤波的动态OD矩阵估计[J].系统工程理论与实践,2003,23(10):135-139. 被引量:10
  • 7ASHOK K. Estimation and prediction of time-dependent origin-destination flows[ D]. Cambridge: MIT Press, 1996.
  • 8Transmodeler 2.5 user' s guide [ K ]. [ S. l. ] : Caliper Corporation, 2007.
  • 9BURGHOUT W. Hybrid microscopic-mesoscopic traffic simulation [ D ]. Sweden : RIT Press ,2004.

二级参考文献5

  • 1Kalidas Ashok. Estimation and Prediction of Time-Dependent Origin-Destination Flows[D]. Massachusetts Institute of Technology, Cambridge, M A, 1996.
  • 2Okutani I, Stephanades Y. Dynamic prediction of traffic volume through kalman filtering theory[J]. Transportation Research, 1984, 18B: 1- 11.
  • 3Pushkin Kachroo. Arvind Narayanan, and Kaan Ozbay. Investigating the Use of Kalman Filtering Approaches for Dynamic Origin-Destination Trip Table Estimation[R]. Center for Transportation Research, Virginia Tech, Blacks-burg, 1995.
  • 4Ashok K, Ben-Akiva ME. Dynamic OD matrix estimation and prediction for real-time traffic management systems[A]. Proceedings of 12^th International Symposium on Transportation and Traffic Theory[C]. Amsterdam Elsevier Science, 1993. 465-484.
  • 5Gang-Len Chang, Xianding Tao. Estimation of Dynamic O-D Distributions for Urban Networks[A]. Proceedings of 13th International Symposium on Transportation and Traffic Theory[C], Amsterdam: Elsevier Science, 1996. 141-160.

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部