期刊文献+

基于最小诊断集的贝叶斯网络诊断模型研究

Study on Bayesian Network Diagnostic Method Based on Minimal Diagnosis Sets
在线阅读 下载PDF
导出
摘要 为了克服基于模型的诊断方法不能确定诊断最优解的缺陷,提出以基于模型的诊断所生成的最小诊断集构建贝叶斯网络的诊断方法,它能通过贝叶斯网络确定候选诊断解的发生概率,进而确定系统最有可能的诊断解。并针对当最小诊断解较多时,构建的贝叶斯网络将非常复杂,不易诊断的问题,提出了超件的概念,并将超件应用于贝叶斯网络构建,以简化构建的贝叶斯网络,提高诊断效率。最后以某电路为例进行诊断分析。 In order to overcome the defect that optimal diagnostic results can't be confirmed by model-based diagnosis(MBD),the diagnostic method that minimal diagnosis set produced by model-based diagnosis is utilized to construct Bayesian Network is presented.It can confirm the probability of each candidate diagnostic results,then confirm optimal diagnostic results of the system.When the number of minimal diagnosis set is big,Bayesian Network constructed will be complex,which will be difficult to get ultimate diagnostic results,so super-component is presented and applied to simplify Bayesian Network,thus the efficiency of diagnosis is improved.Finally,a certain circuit is taken for example to analyze.
作者 王立群
机构地区 黑龙江科技学院
出处 《微计算机信息》 2010年第28期114-115,61,共3页 Control & Automation
关键词 贝叶斯网络 最小诊断集 故障诊断 诊断模型 Bayesian Network minimal diagnosis sets fault diagnosis diagnostic method
  • 相关文献

参考文献5

二级参考文献28

  • 1曹锐,李宏光,李昊阳.一类混杂系统Petri网模型的优化算法的研究[J].微计算机信息,2005,21(1):27-28. 被引量:27
  • 2史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 3刘伟娜,霍利民,张立国.贝叶斯网络精确推理算法的研究[J].微计算机信息,2006,22(03X):92-94. 被引量:33
  • 4[1]Henrik Bengtsson.Bayesian networks[EB/OL].Mathematical tatistics Center for Mathematical Sciences L und Instit ute of Technology,Sweden 2003.
  • 5[2]Kevin Patrick Murphy.Dynamic bayesian networks:representation,inference and learning[EB/oL].A dissertation submitted in partial satisf action of the requirements for the degree of Doctor of Philosophy in Computer Science in the graduate division of the university of California,Berkeley.Fall,2002.
  • 6[3]W,Bacchus F.Learning Bayesian belief networks:An approach based on the MDL principle.Computational Intelligence,1994,10(4):269~293.
  • 7[4]Pearl J.Fusion,propagation,and structuring in belief networks.Artificial Intelligence,Vol.29,No.3,1986,pp241-288
  • 8[10]C.Huang,A.Darwiche.Inference in belief networks:A procedural guide.Intl.J.Approx.Reasoning,15(3):225-263,1996.
  • 9Pearl,J. Probabilistic Reasoning in Intelligence Systems: Networks of Plausible Inference[M]. Morgan Kaufmann,1988
  • 10Cooper G F. The computational complexity of probabilistic inference using Bayesian belief networks[J]. Artificial Intelligence, 1990, 42(2-3): 393-405.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部