期刊文献+

空间高效的数据包公平抽样算法 被引量:12

Space-Efficient Fair Packet Sampling Algorithm
在线阅读 下载PDF
导出
摘要 数据包公平抽样通过牺牲长流的包抽样率以换取更高的短流包抽样率,因而比均匀随机包抽样更能保证数据流之间的公平性.现有的公平抽样算法SGS(sketch guided sampling)存在空间效率低、短流估计误差大的问题.提出了一种空间高效的数据包公平抽样算法SEFS(space-efficient fair sampling).SEFS算法的新颖之处在于采用多解析度抽样统计器对数据流流量作近似估计,各个统计器由d-left哈希表实现.采用在OC-48和OC-192骨干网采集的真实流量数据,在数据流流量测量以及长流检测的应用背景下,对SEFS算法和SGS算法的性能进行了比较.实验结果表明,与SGS算法相比,SEFS算法在空间复杂度降低65%的前提下,仍具有更高的估计精度.特别是对于占网络数据流绝大多数的短流而言,SEFS算法估计精度高的优势更为明显. Fair packet sampling can obtain a higher packet sampling ratio of short flows by sacrificing the packet sampling of long ones; thus, ensuring better fairness among all flows than uniform random sampling does. However, the previously proposed fair sampling algorithm of Sketch Guided Sampling (SGS) has the drawbacks of poor space efficiency and large estimation error for short flows. In this paper, a space-efficient fair packet sampling (SEFS) algorithm is proposed. The key innovation of SEFS is a multi-resolution d-left hashing schema for flow traffic estimation. The performance of SEFS is compared to that of SGS in contexts of both flow traffic measurements and a long flow identification process that uses real-world traffic traces collected from OC-48 and OC-192 backbone network. The experimental results show that the proposed SEFS is more accurate than SGS in both application contexts, while a reduction of 65 percent in space complexity can be achieved. The improvement of estimation accuracy of SEFS is remarkable, especially for short flows, which comprise as past of a large percentage of whole network traffic flows.
出处 《软件学报》 EI CSCD 北大核心 2010年第10期2642-2655,共14页 Journal of Software
基金 国家高技术研究发展计划(863)No.2008AA01A323~~
关键词 网络流量监测:数据包抽样 d-left哈希 network traffic monitoring packet sampling d-left hashing
  • 相关文献

参考文献3

二级参考文献20

  • 1Zseby T. Deployment of sampling methods for SLA validation with non-intrusive measurements. In: Proc. of the Passive and Active Measurements Workshop 2002 (PAM2002). Fort Collins, 2002.
  • 2Nick D, Carsten L, Mikkel T. Charging from sampled network usage. In: Proc. of the Internet Measurement Workshop. San Diego: ACM Press, 2001.
  • 3Goodrich MT. Efficient piecewise-linear function approximation using the uniform metric. In: Proc. of the 10th Annual Symp. on Computational Geometry. 1994. 322-331.
  • 4Pittman J, Murthy CA. Fitting optimal piecewise linear function using genetic algorithms. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,7:701-718.
  • 5Vasko KT, Toivonen Hannu TT. Estimating the number of segments in time series data using permutation tests. In: Proc. of IEEE Int'l Conf. on Data Mining 2002 (ICDM 2002). Maebashi: IEEE Computer Science Press, 2002. 466~473.
  • 6Vitter JS. An efficient algorithm for sequential random sampling. ACM Trans. on Mathematical Software, 1987,3:58-67.
  • 7Claffy KC, Polyzos GC, Braun HW. Application of sampling methodologies to network traffic characterization. Technical Report CS93-275, UCSD.
  • 8Paxson V, Floyd S. Wide-Area traffic: the failure of poisson modeling. IEEE/ACM Trans. on Networking, 1995,6:226-244.
  • 9Paxson V, Almes G, Mathis M. Frameworks for IP performance metrics, RFC 2330, 1998.
  • 10王俊峰 杨建华 周虹霞 谢高岗 周明天.单向延迟测量中时钟动态性检测算法[EB/OL].软件学报http://www.jos. org.cn/1000-9825/15/584.htm,2004,15(4):584-593.

共引文献46

同被引文献110

  • 1张峰,雷振明.基于泊松分布的报文抽样性能衡量[J].北京邮电大学学报,2005,28(2):34-38. 被引量:4
  • 2龚俭,彭艳兵,杨望,刘卫江.基于BloomFilter的大规模异常TCP连接参数再现方法[J].软件学报,2006,17(3):434-444. 被引量:24
  • 3王洪波,韦安明,林宇,程时端.流测量中基于测量缓冲区的时间分层分组抽样[J].软件学报,2006,17(8):1775-1784. 被引量:14
  • 4谢希仁.计算机网络[M].5版.北京:电子工业出版社,2008.
  • 5Esteve C,Fabio L V,Magalhaes M F.Towards a new generation of information-oriented internetworking architectures[C] //Pro ceeding of CoNEXT '08 Madrid.Spain,2008:305-310.
  • 6Eugster P T H,Felber P A,Guerraoui R,et al.The Many Faces of Publish/Subscribe[J].Computing Surveys,2003,35:114-131.
  • 7Fabret F,Jacobsen H A,Llirbat F,et al.Filtering Algorithms and Implementation for Very Fast Publish/Subscribe Systems[C] //SIGMOD.ACM,2001:21-24.
  • 8Gough KJ,Smith G.Efficient recognition of events in distributed systems[C] //Proceeding of the 18th Australasian Computer Science Conference.IEEE,1995.
  • 9Aguilera M K,Strom R E,Sturman D C,et al.Matching events in a content-based subscription system[C] //Proceeding of Proceeding of the 18th ACM Symp.on Principles of Distributed Computing.Atlanta,1999.
  • 10Campailla A,Chaki S,Clarke E,et al.Efficient filtering in pub lish-subscribe systems using binary decision diagrams[C] //Pro ceeding of Proceeding of the ICSE 2001.Toronto,2001.

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部