期刊文献+

SUSAN角点检测算法稳定性改进研究 被引量:3

Research on Improving Stability of SUSAN Corner Detection Algorithm
在线阅读 下载PDF
导出
摘要 SUSAN算法在图像旋转和有噪声的情况下是比较稳定的角点检测方法,但也有漏检和误检的问题。针对其缺陷,提出改进的角点检测方法。改进的办法是将原方法的SUSAN核同值吸收区,替换为在响应圆域内与核像素点灰度值相同,且与核像素点邻接连通的区域。通过改进,避免了原方法漏检和误检的问题,仿真试验结果证明改进方法的正确性和有效性。 Smallest univalue segment assimilating nucleus(SUSAN) is one of the most excellent methods which are robust to noise and less affected by rotation.However,it could not detect all the true corners and generate some false corners in some special case.To solve these problems,an improved SUSAN corner detector is proposed and its performance is compared with SUSAN corner detection.With the improved SUSAN,a corner point is judged based on gray level values of the pixels in a circular neighborhood of the nucleus which is the same as the conventional SUSAN,however,the improved SUSAN calculates the number of the pixels in the univalue adjoining nucleus and connected segment rather than calculate the number of the pixels of univalue nucleus in the neighborhood.Due to this improvement,the improved SUSAN can not only inherit the main merits but also avoid the fatal fault of conventional SUSAN.Experimental results demonstrate that the improved SUSAN corner detection is accurate and efficient.
作者 侯明亮
出处 《计算机与现代化》 2010年第10期75-77,80,共4页 Computer and Modernization
基金 江苏省自然科学基金资助项目(08KJD520013)
关键词 角点检测 SUSAN corner detection SUSAN nucleus
  • 相关文献

参考文献14

  • 1Liao W Z,Pi Y G.Corner detection of the Chinese characters based on first-order difference[C] //Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing.Wuhan,China,2009:349-352.
  • 2Liu M T,Yu P T.Robust candidate pruning approach based on the PSO-SVM for fast corner detection with noise tolerance in gray-level images[J].Fundamenta Informaticae,2009,95(4):491-510.
  • 3Horng W B,Chen C W.Optimizing region of support for boundary-based corner detection:A statistic approach[J].IEICE Transactions on Information and Systems,2009,E92D(10):2103-2111.
  • 4Kitchen L,Rosenfeld A.Gray-level corner detection[J].Pattern Recognition Letters,1982,1(2):95-102.
  • 5Moravec H P.Towards automatic visual obstacle avoidance[C] //Proceedings of the 5th International Joint Conference on Artificial Intelligence.1977:584-585.
  • 6Harris C,Stephens M.A combined corner and edge detector[C] //Proceedings of the 4th Alvey Vision Conference.1988:147-151.
  • 7Rangarajan K,Shah M,Van Brackle D.Optimal corner detector[J].Computer Vision,Graphics,and Image Processing,1989,48(2):230-245.
  • 8Shilat F,Werman M,Gdalyahn Y.Ridge's corner detection and correspondence[C] //Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.1997:976-981.
  • 9Smith S M,Brady J M.SUSAN:A new approach to low level image processing[J].International Journal of Computer Vision,1997,23(1):45-78.
  • 10张映权,王琼华,李大海,张文涛.改进的SUSAN角点检测算法[J].现代电子技术,2009,32(20):42-44. 被引量:6

二级参考文献37

共引文献12

同被引文献26

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部