期刊文献+

一种基于距离度量的自适应粒子群优化算法 被引量:9

Distance Measurement Based Adaptive Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 惯性权值对粒子群优化(Particle Swarm Opti mization,PSO)算法的性能起着重要作用。基本的PSO算法未考虑各粒子的差异而在一次迭代中所有粒子采用固定的惯性权值。为了体现各粒子相对于已知最优解的差异,提出了一种基于距离度量的自适应PSO算法DMAPSO(Distance Measurement-based Adaptive PSO)。算法采用欧式距离计算粒子与已知全局最优粒子的差异,然后根据差异自适应调整各粒子的惯性权值。通过基准测试函数对算法进行了实验,结果表明,对于连续函数优化问题,提出的DMAPSO算法优于经典PSO算法,DMAPSO收敛到最优解的迭代次数比PSO平均减少了约60%。 The inertia weight plays an important role in Particle Swarm Optimization(PSO).The classical PSO used a fixed inertia weight for all particles in an iteration and ignored the difference among the particles.To cope with this issue,a Distance Measurement based Adaptive Particle Swarm Optimization(DMAPSO)was proposed.The Euclidean distance was used to calculate the difference between a particle and the known best global particle,and the particle tuned adaptively the value of the inertia weight according to the difference.Several classical benchmark functions were used to evaluate the strategy.The experimental results show that for continuous optimization problems,the DMAPSO outperforms the classical PSO.The iteration times for finding the best solutions in the DMAPSO decrease about 60% averagely compared with that in the classical PSO.
出处 《计算机科学》 CSCD 北大核心 2010年第10期214-216,共3页 Computer Science
基金 国家自然科学基金(60773169) 西南财经大学金融智能与金融工程重点实验室校内公开项目(FIFE2010-P02)资助
关键词 粒子群 优化算法 惯性权值 距离度量 PSO Optimization algorithm Inertia weight Distance measurement
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of International Conference on Neural Networks. Piscataway, NJ : IEEE Service Center, 1995 : 1942-1948.
  • 2Kennedy J, Eberhart R, Shi Y. Swarm Intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 3Shi Y, Eberhart R. A modified particle swarm optimizer[C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, NJ : IEEE Press, 1998 : 69-73.
  • 4Shi Y, Eberhart R. Particle Swarm Optimization with Fuzzy Adaptive Inertia Weight[C]// Proceedings of the Workshop on Particle Swarm Optimization. Indianapolis, IN: Purdue School of Engineering and Technology, 2001 : 101-106.
  • 5Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of Congress on Evolutionary Computation 2000. San Diego, CA, 2000: 84-88.
  • 6张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:141
  • 7陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:316
  • 8Shi Y, Eberhart R. Parameter selection in particle swarm optimization[C]//Proceedings of the 1998 Annual Conference on Evolutionary Computation. 1998 : 591-600.

二级参考文献13

  • 1Eberhart R C,Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [C]. Piscataway, USA: IEEE Service Center, 1995. 39-43.
  • 2Eberhart R C,Shi Y H. Particle swarm optimization: developments, applications and resources [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 81-86.
  • 3Shi Y H,Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, USA: IEEE Service Center, 2001. 101-106.
  • 4Shi Y H, Eberhart R C. A modified particle swarm optimizer [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway,USA: IEEE Service Center, 1998. 69-73.
  • 5Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 6Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 7Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 8Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.
  • 9Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. International Conference on Evolutionary Computation [C]. Washington, USA: IEEE,1999. 1945-1950.
  • 10Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [A]. The IEEE Congress on Evolutionary Computation [C]. San Francisco, USA.. IEEE, 2001.101-106.

共引文献446

同被引文献86

引证文献9

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部