期刊文献+

基于混合智能优化算法的生理信号情感识别 被引量:1

Research on Emotion Recognition with Physiological Signals Based on Hybrid Intelligent Optimization Algorithm
在线阅读 下载PDF
导出
摘要 让计算机具有识别情感的能力是情感智能的主要标志和实现高级别人机交互的重要前提,其中通过记录和分析生理信号来识别情感状态已经成为情感计算和人机交互研究领域中的热点。针对多生理信号情感识别过程中的特征冗余以及在大样本数据下传统特征降维算法效率普遍不高的现状,提出了结合模拟退火和粒子群算法的混合智能优化算法(SA-PSO)来解决情感特征选择的问题,并结合带权重的离散KNN分类算法(WD-KNN),充分利用情感样本信息进行特征分类。通过对实验仿真数据的分析和与其他方法识别结果的比对,提高了识别率和效率,验证了算法的有效性。 Developing a machine's ability to recognize emotion states is one of the hallmarks of emotional intelligence and important prerequisite for high-level human computer interaction (HCI). Recording and recognizing physiological signals of emotion has become an increasingly important field of research in affective computing and HCI. For the problem of feature redundancy of physiological signals-based emotion recognition and low efficiency of traditional feature reduction algorithms on great sample data,a hybrid intelligent optimization algorithm based on the simulated annealing algorithm and particle swarm optimization algorithm (SA-PSO)was proposed to solve the problem of emotion feature selection. Then a weighted discrete-KNN classifier(WD-KNN)was presented to classify features by making full use of emotion sample information. The recognition rate and efficiency was increased and the algorithm's validity was verified through the analysis of experimental simulation data and the comparison of several recognition methods.
出处 《电信科学》 北大核心 2010年第9期129-135,共7页 Telecommunications Science
基金 国家自然科学基金重点资助项目(No.60533080)
关键词 情感计算 情感识别 特征选择 混合智能优化 affective computing, emotion recognition, feature selection, hybrid intelligent optimization
  • 相关文献

参考文献15

  • 1Picard R. Affective computing. MA : MIT press, 1997.
  • 2Healey J. Wearable and automotive systems for affect recognition from physiology. PhD thesis, MIT, Cambridge, May 2000.
  • 3Picard R,Vyzas E, Healey J. Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions Pattern Analysis and Machine Intelligence, 2001,23 (10):1 175-1 191.
  • 4Haag A,Goronzy S,Schaich P,et ol. Emotion recognition using bio-sensors: first step towards an automatic system.In:Affective Dialogue Systems,Tutorial and Research Workshop, Kloster Irsee, Germany ,June 2004.
  • 5Nasoz F,Alcarez K,Lisetti C,et al. Emotion recognition from physiological signals for presence technologies. International Journal of Cognition,Technology and Work,Special Issue on Presence, 2003,6 ( 1 ).
  • 6Ark W,Dryer D,Lu D. The emotion mouse.8th Int,Conf, Human-computer Interaction, 1999.
  • 7Picard R, Klein J. Computers that recognize and respond to user emotion: theoretical and practical implications. Interacting Computers, 2002,14 (2) : 141 - 169.
  • 8Pudil P,Novovicova J,Kittler J. Floating search methods in feature selection. Pattern Recognition Letters, 1994,15 ( 11 ) : 1 119-1 125.
  • 9Wagner J,Kim J,Andr E. From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification.In :Proceedings of the 2005 IEEE International Conference on Multimedia & Expo, 2005.
  • 10潘全科,朱剑英.基于进化算法和模拟退火算法的混合调度算法[J].机械工程学报,2005,41(6):224-227. 被引量:21

二级参考文献12

  • 1潘全科,朱剑英.基于进化算法和模拟退火算法的混合调度算法[J].机械工程学报,2005,41(6):224-227. 被引量:21
  • 2Chu C, Proth J M, Wang C. Improving job-shop schedules through critical pairwise exchanges. International Journal of Production Research, 1998, 36(3): 683-694.
  • 3Nowicki E, Smutnicki C. A fast taboo search algorithm for the job shop scheduling. Management Science, 1996, 42(6):797-813.
  • 4Shi G Y. A genetic algorithm applied to a classic job-shop scheduling problem. International Journal of Systems Science, 1997, 28(1): 25-32.
  • 5Laarhoven P V, Aarts E, Lenstra J K. Job shop scheduling by simulated anncaling. Operations Research, 1992, 40:113-125.
  • 6Corce F D, Tadei R, Volta G. A genetic algorithm for the job shop problem. Computers and Operations Research, 1995,22:15-24.
  • 7Amico M D, Trubian M. Applying tabu search to the job shop scheduling problems. Annual Operations Research,1993, 40:231-252.
  • 8Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory.Proc.6th International Symposium on Micro Machine and Human Science.Nagoya Japan:IEEE Service Center,1995.
  • 9Pan Q K,Tasgetiren M F,Liang Y C.A Discrete Particle Swarm Optimization Algorithm for the No-Wait Flowshop Scheduling Problem with Makespan Criterion.Proceedings of the International Workshop on UK Planning and Scheduling Special Interest Group,UK PLANSIG2005,London,2005.
  • 10Shi G Y.A Genetic Algorithm Applied to a Classic Job-Shop Scheduling Problem.International Journal of Systems Science,1997,28(1):25~32.

共引文献34

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部