期刊文献+

基于递归和SVM的特征选择方法研究 被引量:2

Study of feature selection method based on recursive and SVM
在线阅读 下载PDF
导出
摘要 特征选择是模式识别领域的一个重要的研究方向,它可以提高分类的效率与效果。本文将递归特征排除算法与SVM决策树结合起来运用于特征选择,首先利用递归特征排除算法对所选择的特征进行初排序,然后依次将特征送入SVM决策树中进行优化评估,对数据中起显著作用的特征进行筛选,除去冗余和次要特征,得到特征子集。最后,通过对Linux主机和相关网络的27个入侵特征数据进行特征选择实验,实验结果表明,特征个数降至21个,而测试精度仍然能达到94%,从而证明本文所提出的递归和SVM相结合的方法是解决特征选择问题的一种有效方法。 Feature selection is an important field of pattern recognition research,it can improve the efficiency and effectiveness of classification.This is paper uniting recursive feature exclude algorithm with SVM decision tree applied to feature selection,first use recursive feature exclude algorithm to sort for selection characteristics,and then it was send into the SVM decision tree to optimize assessment,remove redundancy and secondary features,aim to filtering significant feature subset.Finally,through Linux hosts and related 27 network intrusion feature the test data conduct feature selection experiment,The result show that the feature number can be reduced to 21,while the test accuracy still reach 94%.So the proposed method of uniting recursive with SVM are effective for feature selection.
作者 高猛
出处 《电子测试》 2010年第9期26-29,92,共5页 Electronic Test
关键词 特征选择 递归 SVM 入侵检测 Feature selection recursive SVM intrusion detection
  • 相关文献

参考文献7

二级参考文献46

  • 1李伟红,龚卫国,陈伟民,梁毅雄,尹克重.基于SVM RFE的人脸特征选择方法[J].光电工程,2006,33(5):113-117. 被引量:4
  • 2赵吉文,刘永斌,孔凡让,张平,孙丙宇.基于SVM和遗传算法的新型直线电机结构参数优化[J].光学精密工程,2006,14(5):870-875. 被引量:8
  • 3张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..
  • 4何倩.[D].桂林:桂林电子工业学院,2004—03.
  • 5Andrew H Sung.Identify important features for intrusion detection using support vector machines and neural networks[C].In:IEEE Proceedings of the 2003 Symposium on Application and the Internet, 2003.
  • 6Mukkamala Srinivas, Janoski Guadalupe, Sung Andrew.Intrusion detection using neural networks and support vector machines[C].In:Proceedings of the International Joint Conference on Neural Networks, vol.2,2002 : 1702-1707.
  • 7Botha Martin,von Solms Rossouw.Utilizing fuzzy logic and trend analysis for effective intrusion detection[J].Computers and Security, 2003 ; 22 (5) : 423-434.
  • 8Bala Jerzy,Baik Sung,Hadjarian Ali et al.Application of a distributed data mining approach to network intrusion detection[C].In:Proceedings of the Intematlonal Conference on Autonomous Agents, 2002:1419-1420.
  • 9Hossain Mahmood,Bridges Susan M,Vaughn Jr et al.Adaptive intrusion detection with data mining[C].In :Proc of the IEEE Int Conf on Systems,Man and Cybernetics,vol.4,2003:3097-3103.
  • 10Tim Bass.Intrusion Detection Systems Multisensor Data Fusion Creating Cyberspace Situational Awareness.http ://citeseer. nj.nec.com/ bass00intrusion.html 2001.

共引文献172

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部